Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1753-1763.e7, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38508183

RESUMO

eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinogênese , Neoplasias Pulmonares , Fator 2 de Elongação de Peptídeos , RNA Mensageiro , Humanos , Animais , Metilação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Elongação Traducional da Cadeia Peptídica , Camundongos Nus , Processamento de Proteína Pós-Traducional , Feminino
2.
Ecotoxicol Environ Saf ; 202: 110940, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800223

RESUMO

Recent evidence indicates that chronic, low-dose exposure to mixtures of pesticides can cause adverse responses in a variety of cells, tissues and organs, although interactions between pesticides circulating in the blood and cancer cells remain largely unexplored. The aim of this study was to investigate the potential of a mixture of four pesticides to induce multidrug resistance against the chemotherapeutic agents cisplatin, 5-fluorouracil and temozolomide in the human U87 glioblastoma cell line, and to explore the molecular mechanisms underlying this resistance. We found that the repeated administration of the pesticide mixture (containing the insecticides chlorpyrifos-ethyl and deltamethrin, the fungicide metiram, and the herbicide glyphosate) induced a strong drug resistance in U87 cells. The resistance was durable and transferred to subsequent cell generations. In addition, we detected a significant over-expression of the ATP-binding cassette (ABC) membrane transporters P-gp/ABCB1 and BRCP/ABCG2 as well as a glutathione-S-transferase (GST)/M1-type cellular detoxification function, known to have important roles in multidrug resistance, thus providing molecular support for the acquired multidrug resistance phenotype and shedding light on the mechanism of resistance. We further determined that there was lower mortality in the resistant brain tumor cells and that the mitochondrial apoptosis pathway was activated at a lower rate after chemotherapy compared to non-resistant control cells. In addition, multidrug-resistant cells were found to have both higher motility and wound-healing properties, suggesting a greater metastatic potential. Our results suggest that the investigation of P-gp, BRCP and GST/M1 multidrug resistance gene expression and/or protein levels in biopsy specimens of brain tumor patients who were at risk of pesticide exposure could be beneficial in determining chemotherapy dose and prolonging patient survival.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Praguicidas/toxicidade , Testes de Toxicidade Crônica , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia
3.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

4.
Neurotoxicology ; 87: 219-230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687775

RESUMO

Galaxolide and tonalide are well-known polycyclic musks whose intensive use without limitations in numerous cleaning, hygiene, and personal care products has resulted in widespread direct human exposure via absorption, inhalation, and oral ingestion. Latest data shows that long-term, low-dose exposure to toxic chemicals can induce unpredictable harmful effects in a variety of living systems, however, interactions between synthetic musks and brain tumours remain largely unexplored. Glioblastoma (GB) accounts for nearly half of all tumours of the central nervous system and is characterized by very poor prognosis. The aims of this study were (1) to investigate the potential effect of long-term (20-generation) single and combined application of galaxolide and tonalide at sub-lethal doses (5-2.5 u M) on the angiogenesis, invasion, and migration of human U87 cells or tumour spheroids, and (2) to explore the underlying molecular mechanisms. Random amplified polymorphic DNA assays revealed significant DNA damage and increased total mutation load in galaxolide- and/or tonalide-treated U87 cells. In those same groups, we also detected remarkable tumour spheroid invasion and up-regulation of both HIF1-α/VEGF/MMP9 and IL6/JAK2/STAT3 signals, known to have important roles in hypoxia-related angiogenesis and/or proliferation. Prolonged musk treatment further altered angio-miRNA expression in a manner consistent with poor prognosis in GB. We also detected significant over-expression of the genes Slug, Snail, ZEB1, and Vimentin, which are biomarkers of epithelial to mesenchymal transition. In addition, matrigel, transwell, and wound healing assays clearly showed that long-term sub-lethal exposure to galaxolide and/or tonalide induced invasion and migration proposing a high metastatic potential. Our results suggest that assessing expression of HIF-1a, VEGF, STAT3, and the miR-17-92 cluster in biopsy samples of GB patients who have a history of possible long-term exposure to galaxolide or tonalide could be beneficial for deciding a therapy regime. Additionally, we recommend that extensively-used hygiene and cleaning materials be selected from synthetic musk-free products, especially when used in palliative care processes for GB patients.


Assuntos
Benzopiranos/toxicidade , Carcinógenos/toxicidade , Glioblastoma/induzido quimicamente , Tetra-Hidronaftalenos/toxicidade , Benzopiranos/administração & dosagem , Carcinógenos/administração & dosagem , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Esferoides Celulares/efeitos dos fármacos , Tetra-Hidronaftalenos/administração & dosagem
5.
Toxicol In Vitro ; 75: 105191, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33962019

RESUMO

Diabetic macular edema (DME) is a leading cause of blindness in diabetic retinopathy. Prolonged hyperglycemia plus hypoxia contributes to DME pathogenesis. Retinal pigmented epithelial cells comprise the outer blood-retinal barrier and are essential for maintaining physiological functioning of the retina. Melatonin acts as an antioxidant and regulator of mitochondrial bioenergetics and has a protective effect against ocular diseases. However, the role of mitochondrial dysfunction and the therapeutic potential of melatonin in DME remain largely unexplored. Here, we used an in vitro model of DME to investigate blood-retinal barrier integrity and permeability, angiogenesis, mitochondrial dynamics, and apoptosis signaling to evaluate the potential protective efficacy of melatonin in DME. We found that melatonin prevents cell hyper-permeability and outer barrier breakdown by reducing HIF-1α, HIF-1ß and VEGF and VEGF receptor gene expression. In addition, melatonin reduced the expression of genes involved in mitochondrial fission (DRP1, hFis1, MIEF2, MFF), mitophagy (PINK, BNip3, NIX), and increased the expression of genes involved in mitochondrial biogenesis (PGC-1α, NRF2, PPAR-γ) to maintain mitochondrial homeostasis. Moreover, melatonin prevented apoptosis of retinal pigmented epithelial cells. Our results suggest that mitochondrial dysfunction may be involved in DME pathology, and melatonin may have therapeutic value in DME, by targeting signaling in mitochondria.


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Hipóxia Celular , Retinopatia Diabética , Edema Macular , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Glucose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA