Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(25): 11700-11707, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38863221

RESUMO

Discrete porous coordination cages are attractive as a solution processable material whose porosity is not predicated on a network structure. Here, we leverage the peripheral functionalization of these cage structures to obtain 12 novel, solution processable, porous coordination cages that afford crystalline and amorphous single-phase millimeter-scale monolithic bulk structures (six of each) upon solidification. These structures are based upon prototypal metal-organic polyhedra [Cu24(5-x-isophthalate)24] (where x = NH2, OH), wherein meta-substitution of linker ligands with acyl chloride or isocyanate moieties afforded amide and urethane functional groups, respectively. These porous cage structures were obtainable via direct synthesis between a metal salt and a ligand as well as postsynthetic modification of the cage and formed monoliths following centrifugation and drying of the product. We rationalize their self-assembly as colloidal packing of nanoscale cuboctahedral cages through weak interactions between their hydrophobic alkyl/aromatic surfaces. In general, amorphous solids were obtained via rapid precipitation from the mother liquor upon methanol addition, while crystalline solids could be obtained only following further chloroform and pyridine additions. The structure of the materials is confirmed via gas sorption and spectroscopic methods, while powder X-ray diffraction and transmission electron microscopy are used to determine the nature of these bulk solids.

2.
Chem Commun (Camb) ; 59(77): 11540-11543, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37675651

RESUMO

We report the CO2 capture properties of an ultramicroporous physisorbent [Ni(WO2F4)(pyrazine)2]n, WO2F4-1-Ni, which crystallizes in I4/mcm (a = 9.91785(6) Å, c = 15.71516(9) Å) and its structure is solved using laboratory X-ray powder diffraction. The WO2F4 anion is acentric with polarizable WO bonds offering unique potential properties within a porous structure. Despite isostructural compounds being previously reported, the effect of this distorted anion on CO2 capture properties has not been studied. In this context, at a 400 ppm partial pressure of CO2 (applicable for direct air capture), this primitive cubic (pcu) network captures 0.934 mmolCO2 gsorbent-1 under dry conditions and 0.685 mmolCO2 gsorbent-1 at 75%RH, the highest capacity for a physisorbent reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA