Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Sens J ; 21(5): 6982-6989, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36082320

RESUMO

The availability of Airborne Visible and Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data has enormous possibilities for quantification of Leaf Chlorophyll Content (LCC). The present study used the AVIRIS-NG campaign site of Western India for generation and validation of new chlorophyll indices by denoising the AVIRIS-NG data. For validation, concurrent to AVIRIS-NG flight overpass, field samplings were performed. The acquired AVIRIS-NG was subjected to Spectral Angle Mapper (SAM) classifier for discriminating the crop types. Three smoothing techniques i.e., Fast-Fourier Transform (FFT), Mean and Savitzky-Golay filters were evaluated for their denoising capability. Raw and filtered data was used for developing new chlorophyll indices by optimizing AVIRIS-NG bands using VIs based on parametric regression algorithms. In total, 20 chlorophyll indices and corresponding 20 models were developed for mapping LCC in the area. SAM identified 17 crop types in the area, while FFT found to be the best for filtering. Performance of these models when checked based on Pearson correlation coefficient (r) and Centered Root Mean Square Difference (CRMSD), indicated that LCC-CCI10 based on normalized difference type index formed through Near Infrared band and blue band is the best estimator of LCC (rcal = 0.73, rval = 0.66, CRMSD = 4.97). The approach was also tested using AVIRIS-NG image of the year 2018, which also showed a promising correlation (r = 0.704, CRSMD = 8.98, Bias = -0.5) between modeled and field LCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA