RESUMO
Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.
Assuntos
Interações Hospedeiro-Patógeno , Humanos , Animais , Doença de Lyme/microbiologia , Doenças Transmitidas por Vetores , Interações entre Hospedeiro e Microrganismos , Borrelia burgdorferi/patogenicidade , Borrelia burgdorferi/metabolismoRESUMO
Sphingomyelinases produced by the pathogenic members of the genus Leptospira are implicated in the haemorrhagic manifestations seen in the severe form of leptospirosis. With multiple sphingomyelinase genes present in the genome of pathogenic Leptospira, much remains to be understood about these molecules. They include factors regulating their expression, post-translational modifications, and release of the biologically active forms of these molecules. In this study, serovar Pomona was chosen as it is reported to express high levels of sphingomyelinase that explained the haemolytic activity seen in experimental animals infected with this pathogen. Here, we demonstrate the cytotoxicity of a 42 kDa sphingomyelinase secreted by Leptospira interrogans serovar Pomona strain Pomona upon infecting Vero cells. This sphingomyelinase detected using specific anti-sphingomyelinase antibodies, exhibited haemolytic and sphingomyelinase activities that caused host-cell damage evident from the confocal images and scanning electron micrographs. The implications of these findings and the detection of a 42 kDa sphingomyelinase in the urine of human patients with leptospirosis in our earlier study is discussed with an emphasis on the potential of these sphingomyelinases as candidate markers for the early diagnosis of leptospirosis.
Assuntos
Proteínas de Bactérias/toxicidade , Citotoxinas/toxicidade , Leptospira interrogans serovar pomona/enzimologia , Esfingomielina Fosfodiesterase/toxicidade , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Citotoxinas/química , Citotoxinas/metabolismo , Leptospira interrogans serovar pomona/metabolismo , Peso Molecular , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Células VeroRESUMO
Tuberculosis (TB) remains a significant global health concern, necessitating accurate diagnosis and treatment monitoring. Extracellular vesicles (EVs), including exosomes, play crucial roles in disease progression, with their associated genes serving as potential biomarkers and therapeutic targets. Leveraging publicly available RNA-Seq datasets of TB patients and healthy controls (HCs), to identify differentially expressed genes (DEGs) and their associated protein-protein interaction networks and immune cell profiles, the common EV-related DEGs were identified and validated in the GSE42830 and GSE40553 datasets. We have identified nine common EV-related DEGs (SERPINA1, TNFAIP6, MAPK14, STAT1, ITGA2B, VAMP5, CTSL, CEACAM1, and PLAUR) upregulated in TB patients. Immune cell infiltration analysis revealed significant differences between TB patients and HCs, highlighting increased proportions of various immune cells in TB patients. These DEGs are involved in crucial cellular processes and pathways related to exocytosis and immune response regulation. Notably, VAMP5 exhibited excellent diagnostic performance (AUC-0.993, sensitivity-93.8%, specificity-100%), with potential as a novel biomarker for TB. The EV-related genes can serve as novel potential biomarkers that can distinguish between TB and HCs. VAMP5, which functions in exosome biogenesis and showed significant upregulation in TB, can be targeted for therapeutic interventions and treatment outcomes.
Assuntos
Vesículas Extracelulares , Tuberculose , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/microbiologia , Biomarcadores , Mapas de Interação de Proteínas/genética , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Perfilação da Expressão Gênica , Exossomos/genética , Exossomos/metabolismoRESUMO
BACKGROUND: Tuberculosis is a serious life-threatening disease among the top global health challenges and rapid and effective diagnostic biomarkers are vital for early diagnosis especially given the increasing prevalence of multidrug resistance. METHODS: Two human whole blood microarray datasets, GSE42826 and GSE42830 were retrieved from publicly available gene expression omnibus (GEO) database. Deregulated genes (DEGs) were identified using GEO2R online tool and Gene Ontology (GO), protein-protein interaction (PPI) network analysis was performed using Metascape and STRING databases. Significant genes (n = 8) were identified using T-test/ANOVA and Molecular Complex Detection (MCODE) score ≥10, which was validated in GSE34608 dataset. The diagnostic potential of three biomarkers was assessed using Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) plot. The transcriptional levels of these genes were also examined in a separate dataset GSE31348, to monitor the patterns of variation during tuberculosis treatment. RESULTS: A total of 62 common DEGs (57 upregulated, 7 downregulated genes) were identified in two discovery datasets. GO functions and pathway enrichment analysis shed light on the functional roles of these DEGs in immune response and type-II interferon signaling. The genes in Module-1 (n = 18) were linked to innate immune response, interferon-gamma signaling. The common genes (n = 8) were validated in GSE34608 dataset, that corroborates the results obtained from discovery sets. The gene expression levels demonstrated responsiveness to Mtb infection during anti-TB therapy in GSE31348 dataset. In GSE34608 dataset, the expression levels of three specific genes, GBP5, IFITM3, and EPSTI1, emerged as potential diagnostic makers. In combination, these genes scored remarkable diagnostic performance with 100% sensitivity and 89% specificity, resulting in an impressive Area Under Curve (AUC) of 0.958. However, GBP5 alone showed the highest AUC of 0.986 with 100% sensitivity and 89% specificity. CONCLUSIONS: The study presents valuable insights into the critical gene network perturbed during tuberculosis. These genes are determinants for assessing the effectiveness of an anti-TB response and distinguishing between active TB and healthy individuals. GBP5, IFITM3 and EPSTI1 emerged as candidate core genes in TB and holds potential as novel molecular targets for the development of interventions in the treatment of TB.
Assuntos
Tuberculose , Humanos , Tuberculose/genética , Mapas de Interação de Proteínas/genética , RNA-Seq , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Curva ROC , Redes Reguladoras de Genes , Bases de Dados Genéticas , Biomarcadores/metabolismo , Ontologia GenéticaRESUMO
Leptospira borgpetersenii commonly causes human leptospirosis, including severe disease. The first published analysis of L. borgpetersenii, performed on two strains of serovar Hardjo (L550 and JB197), concluded that the L. borgpetersenii genome is in the process of genome decay with functional consequences leading to a more obligately host-dependent life cycle. Yet whole genome analysis has only been carried out on few strains of L. borgpetersenii, with limited closed genomes and comprehensive analysis. Herein we report the complete, circularized genomes of seven non-Hardjo Leptospira borgpetersenii isolates from human leptospirosis patients in Sri Lanka. These isolates (all ST144) were found to be nearly identical by whole genome analysis; serotyping showed they are a novel serovar. We show that the L. borgpetersenii isolated from humans in Sri Lanka are less genomically decayed than previously reported isolates: fewer pseudogenes (N=141) and Insertion Sequence (IS) elements (N=46) compared to N=248, N=270, and N=400 pseudogenes, and N=121 and N=116 IS elements in published L. borgpetersenii Hardjo genomes (L550, JB197 and TC112). Compared to previously published L. borgpetersenii whole genome analyses showing two to three VM proteins in L. borgpetersenii isolates from cattle, rats and humans, we found that all of the human L. borgpetersenii isolates from Sri Lanka, including previously reported serovar Piyasena, have 4 encoded VM proteins, one ortholog of L. interrogans Copenhageni LIC12339 and 3 orthologs of LIC12844. Our findings of fewer pseudogenes, IS elements and expansion of the LIC12844 homologs of the PF07598 family in these human isolates suggests that this newly identified L. borgpetersenii serovar from Sri Lanka has unique pathogenicity. Comparative genome analysis and experimental studies of these L. borgpetersenii isolates will enable deeper insights into the molecular and cellular mechanisms of leptospirosis pathogenesis.
RESUMO
Recombinant fluorescent fusion proteins are fundamental to advancing many aspects of protein science. Such proteins are typically used to enable the visualization of functional proteins in experimental systems, particularly cell biology. An important problem in biotechnology is the production of functional, soluble proteins. Here we report the use of mCherry-fusions of soluble, cysteine-rich, Leptospira-secreted exotoxins in the PF07598 gene family, the so-called virulence modifying (VM) proteins. The mCherry fusion proteins facilitated the visual detection of pink colonies of the VM proteins (LA3490 and LA1402) and following them through lysis and sequential chromatography steps. CD-spectroscopy analysis confirmed the stability and robustness of the mCherry-fusion protein, with a structure comparable to AlphaFold structural predictions. LA0591, a unique member of the PF07598 gene family that lacks N-terminal ricin B-like domains, was produced without mCherry tag that strengthens the recombinant protein production protocol without fusion protein as well. The current study provides the approaches for the synthesis of 50-125 kDa soluble, cysteine-rich, high-quality fast protein liquid chromatography (FPLC)-purified protein, with and without a mCherry tag. The use of mCherry-fusion proteins enables a streamlined, efficient process of protein production and qualitative and quantitative downstream analytical and functional studies. Approaches for troubleshooting and optimization were evaluated to overcome difficulties in recombinant protein expression and purification, demonstrating biotechnology utility in accelerating recombinant protein production.
RESUMO
Background: Recombinant fluorescent fusion proteins are fundamental to advancing many aspects of protein science. Such proteins are typically used to enable the visualization of functional proteins in experimental systems, particularly cell biology. An important problem in biotechnology is the production of functional, soluble proteins. Here we report the use of mCherry-fusions of soluble, cysteine-rich, Leptospira-secreted exotoxins in the PF07598 gene family, the so-called virulence modifying (VM) proteins. Results: The mCherry fusion proteins facilitated the production of the VM proteins (LA3490 and LA1402) by enabling the visual detection of pink colonies and following them through lysis and sequential chromatography steps. CD-spectroscopy analysis confirmed the stability and robustness of the mCherry-fusion protein, with a structure comparable to AlphaFold structural predictions. LA0591, a unique member of the PF07598 gene family that lacks N-terminal ricin B-like domains, was produced as a tagless protein that strengthens the recombinant protein production protocol. The current study provides the approaches for the synthesis of 50-125 kDa soluble, cysteine-rich, high-quality mCherry tagged or tagless fast protein liquid chromatography (FPLC)-purified protein. Conclusions: The use of mCherry-fusion proteins enables a streamlined, efficient process of protein production and qualitative and quantitative downstream analytical and functional studies. Approaches for troubleshooting and optimization were systemically evaluated to overcome difficulties in recombinant protein expression and purification, demonstrating biotechnology utility in accelerating recombinant protein production.
RESUMO
Mechanisms of leptospirosis pathogenesis remain unclear despite the identification of a number of potential leptospiral virulence factors. We recently demonstrated potential mechanisms by which the virulence-modifying (VM) proteins-defined as containing a Domain of Unknown function (DUF1561), encoded by the PF07598 gene family-found only in group 1 pathogenic Leptospira-might mediate the clinical pathogenesis of leptospirosis. VM proteins belongs to classical AB toxin paradigm though have a unique AB domain architecture, unlike other AB toxins such as diphtheria toxin, pertussis toxin, shiga toxin, or ricin toxin which are typically encoded by two or more genes and self-assembled into a multi-domain holotoxin. Leptospiral VM proteins are secreted R-type lectin domain-containing exotoxins with discrete N-terminal ricin B-like domains involved in host cell surface binding, and a C-terminal DNase/toxin domain. Here we use the artificial intelligence-based AlphaFold algorithm and other computational tools to predict and elaborate on details of the VM protein structure-function relationship. Comparative AlphaFold and CD-spectroscopy defined the consistent secondary structure (Helix and ß-sheet) content, and the stability of the functional domains were further supported by molecular dynamics simulation. VM proteins comprises distinctive lectic family (QxW)3 motifs, the Mycoplasma CARDS toxin (D3 domain, aromatic patches), C-terminal similarity with mammalian DNase I. In-silico study proposed that Gln412, Gln523, His533, Thr59 are the high binding energy or ligand binding residues plausibly anticipates in the functional activities. Divalent cation (Mg+2-Gln412) and phosphate ion (PO4]-3-Arg615) interaction further supports the functional activities driven by C-terminal domain. Computation-driven structure-function studies of VM proteins will guide experimentation towards mechanistic understandings of leptospirosis pathogenesis, which underlie development of new therapeutic and preventive measures for this devastating disease.
RESUMO
Leptospirosis is an emerging infectious disease, with increasing frequency and severity of outbreaks, a changing epidemiology of populations at risk, and the emergence of new strains, serovars, serogroups, and species. Virulence-modifying (VM) proteins encoded by the PF07598 gene family are hypothesized to be Leptospira-secreted exotoxins that mediate the molecular and cellular pathogenesis of severe and fatal leptospirosis. If confirmed experimentally, this concept could revolutionize the treatment, diagnosis, prognosis, and vaccine-mediated prevention of leptospirosis by enabling a novel array of targeted interventions. VM proteins, as with other bacterial-secreted protein exotoxins, mediate their virulence effects by attaching to eukaryotic cells, competing with other microorganisms for limited resources in environmental niches, directly intoxicating target cells, and disrupting their function in the mammalian host. In contrast with the most pathogenic group of Lept ospira, particularly L. interrogans, whose genomes contain 12-15 PF07598 paralogs, strains of the livestock and human pathogen L. borgpetersenii have two PF07598 paralogs. Given the possible non-environmentally mediated transmission of some L. borgpetersenii strains and the much smaller number of VM proteins in this species, their role in infection and disease may well differ from other leptospiral species. Comparison of VM proteins from different clades of pathogenic Leptospira may deepen our understanding of leptospirosis's pathogenesis, leading to novel approaches to ameliorating Leptospira infection in humans and animals.
RESUMO
The molecular and cellular pathogenesis of leptospirosis remains poorly understood. Based on comparative bacterial genomics data, we recently identified the hypothetical PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis pathogenesis, we tested the hypothesis that VM protein immunization of mice would protect against lethal challenge infection and reduce bacterial load in key target organs. C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free, leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice receiving full length recombinant VM proteins were protected from lethal challenge infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial load in the liver and kidney. These experiments show that immunization with recombinant VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced key target organ infection in this animal model. These data support the role of leptospiral VM proteins as virulence factors and suggest the possibility that a VM protein-based, serovar-independent, pan-leptospirosis vaccine may be feasible.
Assuntos
Proteínas de Escherichia coli , Leptospira interrogans , Leptospira , Leptospirose , Animais , Carga Bacteriana , Vacinas Bacterianas/genética , Escherichia coli/genética , Humanos , Rim/patologia , Leptospirose/microbiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C3H , Proteínas Recombinantes/genética , Vacinação , VirulênciaRESUMO
Leptospirosis is a globally important neglected zoonotic disease. Previous data suggest that a family of virulence-modifying (VM) proteins (PF07598) is a distinctive feature of group I pathogenic Leptospira that evolved as important virulence determinants. Here, we show that one such VM protein, LA3490 (also known as Q8F0K3), is expressed by Leptospira interrogans serovar Lai, as a secreted genotoxin that is potently cytotoxic to human cells. Structural homology searches using Phyre2 suggested that VM proteins are novel R-type lectins containing tandem N-terminal ricin B-chain-like ß-trefoil domains. Recombinant LA3490 (rLA3490) and an N-terminal fragment, t3490, containing only the predicted ricin B domain, bound to the terminal galactose and N-acetyl-galactosamine residues, asialofetuin, and directly competed for asialofetuin-binding sites with recombinant ricin B chain. t3490 alone was sufficient for binding, both to immobilized asialofetuin and to the HeLa cell surface but was neither internalized nor cytotoxic. Treatment of HeLa cells with rLA3490 led to cytoskeleton disassembly, caspase-3 activation, and nuclear fragmentation, and was rapidly cytolethal. rLA3490 had DNase activity on mammalian and bacterial plasmid DNA. The combination of cell surface binding, internalization, nuclear translocation, and DNase functions indicate that LA3490 and other VM proteins evolved as novel forms of the bacterial AB domain-containing toxin paradigm.
RESUMO
Importance: Early treatment of mild SARS-CoV-2 infection might lower the risk of clinical deterioration in COVID-19. Objective: To determine whether oral camostat mesylate would reduce upper respiratory SARS-CoV-2 viral load in newly diagnosed outpatients with mild COVID-19, and would lead to improvement in COVID-19 symptoms. Design: From June, 2020 to April, 2021, we conducted a randomized, double-blind, placebo-controlled phase 2 trial. Setting: Single site, academic medical center, outpatient setting in Connecticut, USA. Participants: Of 568 COVID-19 positive potential adult participants diagnosed within 3 days of study entry and assessed for eligibility, 70 were randomized and 498 were excluded (198 did not meet eligibility criteria, 37 were not interested, 265 were excluded for unknown or other reasons). The primary inclusion criteria were a positive SARS-CoV-2 nucleic acid amplification result in adults within 3 days of screening regardless of COVID-19 symptoms. Intervention: Treatment was 7 days of oral camostat mesylate, 200 mg po four times a day, or placebo. Main Outcomes and Measures: The primary outcome was reduction of 4-day log10 nasopharyngeal swab viral load by 0.5 log10 compared to placebo. The main prespecified secondary outcome was reduction in symptom scores as measured by a quantitative Likert scale instrument, Flu-PRO-Plus modified to measure changes in smell/taste measured using FLU-PRO-Plus. Results: Participants receiving camostat had statistically significant lower quantitative symptom scores (FLU-Pro-Plus) at day 6, accelerated overall symptom resolution and notably improved taste/smell, and fatigue beginning at onset of intervention in the camostat mesylate group compared to placebo. Intention-to-treat analysis demonstrated that camostat mesylate was not associated with a reduction in 4-day log10 NP viral load compared to placebo. Conclusions and relevance: The camostat group had more rapid resolution of COVID-19 symptoms and amelioration of the loss of taste and smell. Camostat compared to placebo was not associated with reduction in nasopharyngeal SARS-COV-2 viral load. Additional clinical trials are warranted to validate the role of camostat mesylate on SARS-CoV-2 infection in the treatment of mild COVID-19. Trial registration: Clinicaltrials.gov, NCT04353284 (04/20/20)(https://clinicaltrials.gov/ct2/show/NCT04353284?term=camostat+%2C+yale&draw=2&rank=1).