Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299232

RESUMO

The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Cromatina/fisiologia , Sítios de Ligação/genética , Imunoprecipitação da Cromatina/métodos , Epigênese Genética/genética , Epigenoma/genética , Epigenômica/métodos , Regulação da Expressão Gênica/genética , Genoma , Estudo de Associação Genômica Ampla/métodos , Código das Histonas/genética , Humanos , Herança Multifatorial/genética , Nucleossomos/metabolismo , Nucleossomos/fisiologia , Polimorfismo de Nucleotídeo Único/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
2.
Nat Commun ; 14(1): 2912, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217515

RESUMO

Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.


Assuntos
Transtorno Depressivo Maior , Transcriptoma , Masculino , Feminino , Humanos , Transcriptoma/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/metabolismo , Depressão/genética , Encéfalo/metabolismo
3.
Nat Protoc ; 16(6): 2788-2801, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33972803

RESUMO

Single-cell and single-nucleus sequencing techniques are a burgeoning field with various biological, biomedical and clinical applications. Numerous high- and low-throughput methods have been developed for sequencing the RNA and DNA content of single cells. However, for all these methods, the key requirement is high-quality input of a single-cell or single-nucleus suspension. Preparing such a suspension is the limiting step when working with fragile, archived tissues of variable quality. This hurdle can prevent such tissues from being extensively investigated with single-cell technologies. We describe a protocol for preparing single-nucleus suspensions within the span of a few hours that reliably works for multiple postmortem and archived tissue types using standard laboratory equipment. The stages of the protocol include tissue preparation and dissociation, nuclei extraction, and nuclei concentration assessment and capture. The protocol is comparable to other published protocols but does not require fluorescence-assisted nuclei sorting (FANS) or ultracentrifugation. The protocol can be carried out by a competent graduate student familiar with basic laboratory techniques and equipment. Moreover, these preparations are compatible with single-nucleus (sn)RNA-seq and assay for transposase-accessible chromatin (ATAC)-seq using the 10X Genomics Chromium system. The protocol reliably results in efficient capture of single nuclei for high-quality snRNA-seq libraries.


Assuntos
Núcleo Celular , Análise de Sequência de DNA , Análise de Célula Única/métodos , Humanos
4.
Physiol Behav ; 180: 78-90, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821448

RESUMO

Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.


Assuntos
Transtorno da Compulsão Alimentar/complicações , Transtorno da Compulsão Alimentar/fisiopatologia , Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Regulação da Expressão Gênica/fisiologia , Análise de Variância , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Comportamento Exploratório/fisiologia , Gorduras/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Reconhecimento Psicológico/fisiologia
5.
Int J Biol Macromol ; 104(Pt B): 1975-1985, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28089930

RESUMO

Critical-sized bone defects are augmented with cell free and cell loaded constructs to bridge bone defects. Improving the properties of three-dimensional scaffolds with multiple polymers and others is of growing interest in recent decades. Chitosan (CS), a natural biopolymer has limitations for its use in bone regeneration, and its properties can be enhanced with other materials. In the present study, the composite scaffolds containing CS, gelatin (Gn) and graphene oxide (GO) were fabricated through freeze-drying. These scaffolds (GO/CS/Gn) were characterized by the SEM, Raman spectra, FT-IR, EDS, swelling, biodegradation, protein adsorption and biomineralization studies. The inclusion of GO in the CS/Gn scaffolds showed better physico-chemical properties. The GO/CS/Gn scaffolds were cyto-friendly to rat osteoprogenitor cells, and they promoted differentiation of mouse mesenchymal stem cells into osteoblasts. The scaffolds also accelerated bridging of the rat tibial bone defect with increased collagen deposition in vivo. Hence, these results strongly suggested the potential nature of GO/CS/Gn scaffolds for their application in bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Quitosana , Gelatina , Grafite , Engenharia Tecidual , Alicerces Teciduais , Animais , Calcificação Fisiológica , Sobrevivência Celular , Quitosana/química , Gelatina/química , Grafite/química , Masculino , Teste de Materiais , Óxidos , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA