Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nanomedicine ; 18: 31-43, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30831275

RESUMO

Side population (SP) cells with stem-like properties, also known as cancer stem cells (CSC) have been recognized as drivers of the resistance phenotype in many cancers. Central to the characteristic stem-like phenotype of CSCs in cancer is the activity of the SOX2 transcription factor whose upregulation has been associated with enrichment of many oncogenes. This study outlines the fabrication of a lipoplex of SOX2 small interfering RNA (CL-siSOX2) for targeted treatment of SOX2-enriched, CSC-derived orthotopic and xenograft lung tumors in CB-17 SCID mice. CL-siSOX2 induced tumor contraction in cisplatin-naïve and cisplatin-treated groups by 85% and 94% respectively. Reduction in tumor weight and volume following treatment with CL-siSOX2 was associated with reduced protein expression of SOX2 and markers of tumor initiation, inflammation, invasion and metastasis in mice tumor xenografts. In addition, histological staining of lung tumor sections showed reduction in SOX2 expression was associated with inhibition markers of epithelial-to-mesenchymal transition.


Assuntos
Lipídeos/química , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Cátions , Linhagem Celular Tumoral , Proliferação de Células , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Cinética , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer ; 17(1): 149, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30322398

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer related deaths and its incidence is highly correlated with cigarette smoking. Nicotine, the addictive component of tobacco smoke, cannot initiate tumors, but can promote proliferation, migration, and invasion of cells in vitro and promote tumor growth and metastasis in vivo. This nicotine-mediated tumor promotion is facilitated through the activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit. More recently, nicotine has been implicated in promoting self-renewal of stem-like side-population cells from lung cancers. This subpopulation of cancer stem-like cells has been implicated in tumor initiation, generation of the heterogeneous tumor population, metastasis, dormancy, and drug resistance. Here we describe the molecular events driving nicotine and e-cigarette extract mediated stimulation of self-renewal of stem-like cells from non-small cell lung cancer. METHODS: Experiments were conducted using A549 and H1650 non-small cell lung cancer cell lines and human mesenchymal stem cells according to protocols described in this paper. 2 µM nicotine or e-cigarette extracts was used in all relevant experiments. Biochemical analysis using western blotting, transient transfections, RT-PCR and cell biological analysis using double immunofluorescence and confocal microscopy, as well as proximity ligation assays were conducted. RESULTS: Here we demonstrate that nicotine can induce the expression of embryonic stem cell factor Sox2, which is indispensable for self-renewal and maintenance of stem cell properties in non-small cell lung adenocarcinoma (NSCLC) cells. We further demonstrate that this occurs through a nAChR-Yap1-E2F1 signaling axis downstream of Src and Yes kinases. Our data suggests Oct4 may also play a role in this process. Over the past few years, electronic cigarettes (e-cigarettes) have been promoted as healthier alternatives to traditional cigarette smoking as they do not contain tobacco; however, they do still contain nicotine. Hence we have investigated whether e-cigarette extracts can enhance tumor promoting properties similar to nicotine; we find that they can induce expression of Sox2 as well as mesenchymal markers and enhance migration and stemness of NSCLC cells. CONCLUSIONS: Our findings shed light on novel molecular mechanisms underlying the pathophysiology of smoking-related lung cancer in the context of cancer stem cell populations, and reveal new pathways involved that could potentially be exploited therapeutically.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Sistemas Eletrônicos de Liberação de Nicotina , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Simulação por Computador , Fator de Transcrição E2F1 , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Nicotina/farmacologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , Receptores Nicotínicos/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP , Quinases da Família src/metabolismo
3.
Neuro Oncol ; 26(1): 70-84, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37551745

RESUMO

BACKGROUND: Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS: We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS: CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS: Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 9 Dependente de Ciclina/metabolismo
4.
Mol Cancer ; 11: 24, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22537161

RESUMO

BACKGROUND: The membrane-bound mucins are thought to play an important biological role in cell-cell and cell-matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. RESULTS: Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. CONCLUSIONS: Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Mucina-4/genética , Nicotina/farmacologia , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Fator de Transcrição E2F1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Janus Quinases/metabolismo , Neoplasias Pancreáticas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Nicotínicos/metabolismo , Fator de Transcrição STAT1/metabolismo , Ativação Transcricional/efeitos dos fármacos , Quinases da Família src/metabolismo
5.
Mol Cancer ; 11: 73, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23009336

RESUMO

BACKGROUND: Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. RESULTS: SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. CONCLUSIONS: Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the EGFR-Src-Akt targeted therapy may rely upon the expression and function of Sox2 within the NSCLC-CSCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/genética , Quinases da Família src/metabolismo , Animais , Biomarcadores/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Receptores ErbB/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células da Side Population/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochem Biophys Res Commun ; 418(1): 56-61, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22240023

RESUMO

Smoking is highly correlated with enhanced likelihood of atherosclerosis by inducing endothelial dysfunction. In endothelial cells, various cell-adhesion molecules including E-selectin, are shown to be upregulated upon exposure to nicotine, the addictive component of tobacco smoke; however, the molecular mechanisms underlying this induction are poorly understood. Here we demonstrate that nicotine-induced E-selectin transcription in human aortic endothelial cells (HAECs) could be significantly blocked by α7-nAChR subunit inhibitor, α-BT, Src-kinase inhibitor, PP2, or siRNAs against Src or ß-Arrestin-1 (ß-Arr1). Further, chromatin immunoprecipitations show that E-selectin is an E2F1 responsive gene and nicotine stimulation results in increased recruitment of E2F1 on E-selectin promoter. Inhibiting E2F1 activity using RRD-251, a disruptor of the Rb-Raf-1 kinase interaction, could significantly inhibit the nicotine-induced recruitment of E2F1 to the E-selectin promoter as well as E-selectin expression. Interestingly, stimulation of HAECs with nicotine results in increased adhesion of U937 monocytic cells to HAECs and could be inhibited by pre-treatment with RRD-251. Similarly, depletion of E2F1 or Src using RNAi blocked the increased adhesion of monocytes to nicotine-stimulated HAECs. These results suggest that nicotine-stimulated adhesion of monocytes to endothelial cells is dependent on the activation of α7-nAChRs, ß-Arr1 and cSrc regulated increase in E2F1-mediated transcription of E-selectin gene. Therefore, agents such as RRD-251 that can target activity of E2F1 may have potential therapeutic benefit against cigarette smoke induced atherosclerosis.


Assuntos
Selectina E/genética , Fator de Transcrição E2F1/metabolismo , Endotélio Vascular/efeitos dos fármacos , Nicotina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Quinases da Família src/metabolismo , Antagonistas Adrenérgicos alfa/farmacologia , Aorta/citologia , Bungarotoxinas/farmacologia , Células Cultivadas , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/genética , Endotélio Vascular/metabolismo , Humanos , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Receptores Nicotínicos/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia , Receptor Nicotínico de Acetilcolina alfa7 , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
7.
Cell Div ; 17(1): 6, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494865

RESUMO

Molecular epidemiology evidence indicates racial and ethnic differences in the aggressiveness and survival of breast cancer. Hispanics/Latinas (H/Ls) and non-Hispanic Black women (NHB) are at higher risk of breast cancer (BC)-related death relative to non-Hispanic white (NHW) women in part because they are diagnosed with hormone receptor-negative (HR) subtype and at higher stages. Since the cell cycle is one of the most commonly deregulated cellular processes in cancer, we propose that the mitotic kinases TTK (or Mps1), TBK1, and Nek2 could be novel targets to prevent breast cancer progression among NHBs and H/Ls. In this study, we calculated levels of TTK, p-TBK1, epithelial (E-cadherin), mesenchymal (Vimentin), and proliferation (Ki67) markers through immunohistochemical (IHC) staining of breast cancer tissue microarrays (TMAs) that includes samples from 6 regions in the Southeast of the United States and Puerto Rico -regions enriched with NHB and H/L breast cancer patients. IHC analysis showed that TTK, Ki67, and Vimentin were significantly expressed in triple-negative (TNBC) tumors relative to other subtypes, while E-cadherin showed decreased expression. TTK correlated with all of the clinical variables but p-TBK1 did not correlate with any of them. TCGA analysis revealed that the mRNA levels of multiple mitotic kinases, including TTK, Nek2, Plk1, Bub1, and Aurora kinases A and B, and transcription factors that are known to control the expression of these kinases (e.g. FoxM1 and E2F1-3) were upregulated in NHBs versus NHWs and correlated with higher aneuploidy indexes in NHB, suggesting that these mitotic kinases may be future novel targets for breast cancer treatment in NHB women.

8.
J Biol Chem ; 285(13): 9813-9822, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20106982

RESUMO

CDKN1C is a cyclin-dependent kinase inhibitor and is a candidate tumor suppressor gene. We previously found that the CDKN1C protein represses E2F1-driven transcription in an apparent negative feedback loop. Herein, we explore the mechanism by which CDKN1C represses transcription. We find that adenoviral-mediated overexpression of CDKN1C leads to a dramatic reduction in phosphorylation of the RNA polymerase II (pol II) C-terminal domain (CTD). RNA interference studies demonstrate that this activity is not an artifact of CDKN1C overexpression, because endogenous CDKN1C mediates an inhibition of RNA pol II CTD phosphorylation in HeLa cells upon treatment with dexamethasone. Surprisingly, we find that CDKN1C-mediated repression of RNA pol II phosphorylation is E2F1-dependent, suggesting that E2F1 may direct CDKN1C to chromatin. Chromatin immunoprecipitation assays demonstrate that CDKN1C is associated with E2F1-regulated promoters in vivo and that this association can dramatically reduce the level of RNA pol II CTD phosphorylation at both Ser-2 and Ser-5 of the C-terminal domain repeat. In addition, we show that CDKN1C interacts with both CDK7 and CDK9 (putative RNA pol II CTD kinases) and that CDKN1C blocks their ability to phosphorylate a glutathione S-transferase-CTD fusion protein in vitro. E2F1 and CDKN1C are found to form stable complexes both in vivo and in vitro. Molecular studies demonstrate that the E2F1-CDKN1C interaction is mediated by two E2F domains. A central E2F1 domain interacts directly with CDKN1C, whereas a C-terminal E2F1 domain interacts with CDKN1C via interaction with Rb. The results presented in this report highlight a novel mechanism of tumor suppression by CDKN1C.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação Enzimológica da Expressão Gênica , RNA Polimerase II/fisiologia , Ciclo Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Células HeLa , Humanos , Modelos Biológicos , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase II/química , Transcrição Gênica
9.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118929, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33310066

RESUMO

Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética
10.
Sci Rep ; 11(1): 9016, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907253

RESUMO

Nek2 (NIMA-related kinase 2) is a serine/threonine-protein kinase that localizes to centrosomes and kinetochores, controlling centrosome separation, chromosome attachments to kinetochores, and the spindle assembly checkpoint. These processes prevent centrosome amplification (CA), mitotic dysfunction, and chromosome instability (CIN). Our group and others have suggested that Nek2 maintains high levels of CA/CIN, tumor growth, and drug resistance. We identified that Nek2 overexpression correlates with poor survival of breast cancer. However, the mechanisms driving these phenotypes are unknown. We now report that overexpression of Nek2 in MCF10A cells drives CA/CIN and aneuploidy. Besides, enhanced levels of Nek2 results in larger 3D acinar structures, but could not initiate tumors in a p53+/+ or a p53-/- xenograft model. Nek2 overexpression induced the epithelial-to-mesenchymal transition (EMT) while its downregulation reduced the expression of the mesenchymal marker vimentin. Furthermore, either siRNA-mediated downregulation or INH6's chemical inhibition of Nek2 in MDA-MB-231 and Hs578t cells showed important EMT changes and decreased invasion and migration. We also showed that Slug and Zeb1 are involved in Nek2 mediated EMT, invasion, and migration. Besides its role in CA/CIN, Nek2 contributes to breast cancer progression through a novel EMT mediated mechanism.


Assuntos
Centrossomo/metabolismo , Transição Epitelial-Mesenquimal , Quinases Relacionadas a NIMA/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Células Acinares/patologia , Aneuploidia , Animais , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Instabilidade Cromossômica , Células Epiteliais/patologia , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Fatores de Transcrição da Família Snail/metabolismo , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Methods Mol Biol ; 523: 341-66, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381927

RESUMO

Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin-modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, allow us to determine the entire spectrum of in vivo DNA-binding sites for a given protein. This has been of immense value because ChIP on chip assays can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This article outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols.


Assuntos
Imunoprecipitação da Cromatina/métodos , Genoma/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Extratos Celulares , Reagentes de Ligações Cruzadas/farmacologia , DNA/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
12.
Methods Mol Biol ; 523: 203-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381937

RESUMO

Regulatory mechanisms for DNA replication are crucial to the control of the cell cycle in eukaryotic cells. One of the widely used assays to understand the complex mammalian replication system is the cell-free in vitro replication assay (IVRA). IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.


Assuntos
Bioensaio/métodos , Extratos Celulares , Replicação do DNA , Mamíferos/metabolismo , Animais , Núcleo Celular , Células Cultivadas , Citosol , Humanos , Plasmídeos , Transfecção
13.
Methods Mol Biol ; 523: 323-39, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381928

RESUMO

Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene or a variety of genes at the same time. Availability of high-quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.


Assuntos
Imunoprecipitação da Cromatina/métodos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Animais , Ligação Proteica
14.
Cell Rep ; 28(11): 2824-2836.e8, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509745

RESUMO

The deregulation of the actin cytoskeleton has been extensively studied in metastatic dissemination. However, the post-dissemination role of the actin cytoskeleton dysregulation is poorly understood. Here, we report that fascin, an actin-bundling protein, promotes lung cancer metastatic colonization by augmenting metabolic stress resistance and mitochondrial oxidative phosphorylation (OXPHOS). Fascin is directly recruited to mitochondria under metabolic stress to stabilize mitochondrial actin filaments (mtF-actin). Using unbiased metabolomics and proteomics approaches, we discovered that fascin-mediated mtF-actin remodeling promotes mitochondrial OXPHOS by increasing the biogenesis of respiratory Complex I. Mechanistically, fascin and mtF-actin control the homeostasis of mtDNA to promote mitochondrial OXPHOS. The disruption of mtF-actin abrogates fascin-mediated lung cancer metastasis. Conversely, restoration of mitochondrial respiration by using yeast NDI1 in fascin-depleted cancer cells is able to rescue lung metastasis. Our findings indicate that the dysregulated actin cytoskeleton in metastatic lung cancer could be targeted to rewire mitochondrial metabolism and to prevent metastatic recurrence.


Assuntos
Citoesqueleto de Actina/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/secundário , Proteínas de Transporte/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/metabolismo , Actinas/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Metabolômica , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/genética , Mitocôndrias/genética , Fosforilação Oxidativa , Proteômica , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transplante Heterólogo
15.
Clin Cancer Res ; 25(18): 5686-5701, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31227503

RESUMO

PURPOSE: The clinical use of MEK inhibitors in uveal melanoma is limited by the rapid acquisition of resistance. This study has used multiomics approaches and drug screens to identify the pan-HDAC inhibitor panobinostat as an effective strategy to limit MEK inhibitor resistance.Experimental Design: Mass spectrometry-based proteomics and RNA-Seq were used to identify the signaling pathways involved in the escape of uveal melanoma cells from MEK inhibitor therapy. Mechanistic studies were performed to evaluate the escape pathways identified, and the efficacy of the MEK-HDAC inhibitor combination was demonstrated in multiple in vivo models of uveal melanoma. RESULTS: We identified a number of putative escape pathways that were upregulated following MEK inhibition, including the PI3K/AKT pathway, ROR1/2, and IGF-1R signaling. MEK inhibition was also associated with increased GPCR expression, particularly the endothelin B receptor, and this contributed to therapeutic escape through ET-3-mediated YAP signaling. A screen of 289 clinical grade compounds identified HDAC inhibitors as potential candidates that suppressed the adaptive YAP and AKT signaling that followed MEK inhibition. In vivo, the MEK-HDAC inhibitor combination outperformed either agent alone, leading to a long-term decrease of tumor growth in both subcutaneous and liver metastasis models and the suppression of adaptive PI3K/AKT and YAP signaling. CONCLUSIONS: Together, our studies have identified GPCR-mediated YAP activation and RTK-driven AKT signaling as key pathways involved in the escape of uveal melanoma cells from MEK inhibition. We further demonstrate that HDAC inhibition is a promising combination partner for MEK inhibitors in advanced uveal melanoma.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Uveais/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Panobinostat/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Cell Biol ; 24(21): 9527-41, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485920

RESUMO

The retinoblastoma tumor suppressor protein (Rb) plays a vital role in regulating mammalian cell cycle progression and inactivation of Rb is necessary for entry into S phase. Rb is inactivated by phosphorylation upon growth factor stimulation of quiescent cells, facilitating the transition from G(1) phase to S phase. Although the signaling events after growth factor stimulation have been well characterized, it is not yet clear how these signals contact the cell cycle machinery. We had found previously that growth factor stimulation of quiescent cells lead to the direct binding of Raf-1 kinase to Rb, leading to its inactivation. Here we show that the Rb-Raf-1 interaction occurs prior to the activation of cyclin and/or cyclin-dependent kinases and facilitates normal cell cycle progression. Raf-1-mediated inactivation of Rb is independent of the mitogen-activated protein kinase cascade, as well as cyclin-dependent kinases. Binding of Raf-1 seemed to correlate with the dissociation of the chromatin remodeling protein Brg1 from Rb. Disruption of the Rb-Raf-1 interaction by a nine-amino-acid peptide inhibits Rb phosphorylation, cell proliferation, and vascular endothelial growth factor-mediated capillary tubule formation. Delivery of this peptide by a carrier molecule led to a 79% reduction in tumor volume and a 57% reduction in microvessel formation in nude mice. It appears that Raf-1 links mitogenic signaling to Rb and that disruption of this interaction could aid in controlling proliferative disorders.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Ciclina D , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F , Ativação Enzimática , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosforilação , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Proteína do Retinoblastoma/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Fase S/efeitos dos fármacos , Soro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Methods Mol Biol ; 383: 135-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18217683

RESUMO

Gene expression pattern in cancer cells differ significantly from their normal counter parts, owing to mutations in oncogenes and tumor suppressor genes, their downstream targets, or owing to increased proliferation, and altered apoptotic potential. Various microarray based techniques have been widely utilized to study the differential expression of genes in cancer in recent years. Along with this, attempts have been made to study the transcriptional regulatory mechanisms and chromatin modifications facilitating such differential gene expression. One of the widely used assays for this purpose is the chromatin immunoprecipitation (ChIP) assay, which enables the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. This has been of immense value, because ChIP assays can provide a snapshot of the regulatory mechanisms involved in the expression of a single gene, or a variety of genes at the same time. This review article outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors, based on the experience in studying E2F1 and histone modifications as well as other published protocols. In addition, the use of ChIP assays to carry out global analysis of transcription factor recruitment is also addressed.


Assuntos
Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Montagem e Desmontagem da Cromatina , Histonas/química , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo
18.
Oncogene ; 21(55): 8388-96, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12466959

RESUMO

The potential tumor suppressor protein prohibitin can prevent cell proliferation and this required its binding to the Rb protein. Prohibitin could repress the transcriptional activity of E2F family members and this required a part of the marked box region of E2F. The sub-cellular localization of prohibitin has been variously attributed to the mitochondria as well as the inner cell membrane. Here we show that a subset of prohibitin molecules are present in the nucleus where it co-localizes with the Rb protein. Deletion of a putative amino-terminal membrane-docking domain of prohibitin had no effect on its ability to suppress cell proliferation or inhibit E2F activity. Our experiments show that a 53 amino-acid stretch of E2F1 is sufficient for being targeted by prohibitin; fusion of this region to GAL4-VP16 construct could make it susceptible to prohibitin-mediated, but not Rb-mediated repression. Prohibitin, like Rb, could repress transcription from SV40 and major late promoters when recruited directly to DNA. Prohibitin mediated transcriptional repression required histone-deacetylase activity, but unlike Rb, additional co-repressors like N-CoR are also involved. Repression by prohibitin correlates with histone deacetylation on promoters and this was reversed by IgM stimulation of cells; IgM did not affect Rb-mediated repression or deacetylation of the promoters. Prohibitin thus appears to repress E2F-mediated transcription utilizing different molecular mediators and facilitate channeling of specific signaling pathways to the cell cycle machinery.


Assuntos
Núcleo Celular/fisiologia , Histona Desacetilases/genética , Proteínas Nucleares/genética , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteína do Retinoblastoma/metabolismo , Transcrição Gênica , Sequência de Bases , Neoplasias da Mama , Primers do DNA , Feminino , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1 , Humanos , Correpressor 1 de Receptor Nuclear , Proibitinas , Transfecção , Células Tumorais Cultivadas
19.
Mol Cancer Ther ; 1(4): 253-66, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12467221

RESUMO

Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead promote mitochondrial damage and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Butiratos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/biossíntese , Ciclinas/metabolismo , Ciclinas/fisiologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Leucemia/patologia , Piperidinas/farmacologia , Western Blotting , Caspases/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Grupo dos Citocromos c/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Leucemia/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Células Tumorais Cultivadas/patologia
20.
Methods Mol Biol ; 1288: 349-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25827890

RESUMO

Regulatory mechanisms are crucial to control DNA replication during cell cycle in eukaryotic cells. Cell-free in vitro replication assay (IVRA) is one of the widely used assays to understand the complex mammalian replication system. IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.


Assuntos
Extratos Celulares , Sistema Livre de Células , Replicação do DNA , Animais , Humanos , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA