Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Stroke ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920050

RESUMO

BACKGROUND: Preconditioning by intermittent fasting is linked to improved cognition and motor function, and enhanced recovery after stroke. Although the duration of fasting was shown to elicit different levels of neuroprotection after ischemic stroke, the impact of time of fasting with respect to the circadian cycles remains unexplored. METHODS: Cohorts of mice were subjected to a daily 16-hour fast, either during the dark phase (active-phase intermittent fasting) or the light phase (inactive-phase intermittent fasting) or were fed ad libitum. Following a 6-week dietary regimen, mice were subjected to transient focal cerebral ischemia and underwent behavioral functional assessment. Brain samples were collected for RNA sequencing and histopathologic analyses. RESULTS: Active-phase intermittent fasting cohort exhibited better poststroke motor and cognitive recovery as well as reduced infarction, in contrast to inactive-phase intermittent fasting cohort, when compared with ad libitum cohort. In addition, protection of dendritic spine density/morphology and increased expression of postsynaptic density protein-95 were observed in the active-phase intermittent fasting. CONCLUSIONS: These findings indicate that the time of daily fasting is an important factor in inducing ischemic tolerance by intermittent fasting.

2.
Stroke ; 52(7): 2381-2392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940958

RESUMO

Background and Purpose: Stroke induces the expression of several long noncoding RNAs in the brain. However, their functional significance in poststroke outcome is poorly understood. We recently observed that a brain-specific long noncoding RNA called Fos downstream transcript (FosDT) is induced rapidly in the rodent brain following focal ischemia. Using FosDT knockout rats, we presently evaluated the role of FosDT in poststroke brain damage. Methods: FosDT knockout rats were generated using CRISPR-Cas9 genome editing on a Sprague-Dawley background. Male and female FosDT−/− and FosDT+/+ cohorts were subjected to transient middle cerebral artery occlusion. Postischemic sensorimotor deficits were evaluated between days 1 and 7 and lesion volume on day 7 of reperfusion. The developmental expression profile of FosDT was determined with real-time polymerase chain reaction and mechanistic implications of FosDT in the ischemic brain were conducted with RNA-sequencing analysis and immunostaining of pathological markers. Results: FosDT expression is developmentally regulated, with the adult cerebral cortex showing significantly higher FosDT expression than neonates. FosDT−/− rats did not show any anomalies in growth and development, fertility, brain cytoarchitecture, and cerebral vasculature. However, when subjected to transient focal ischemia, FosDT−/− rats of both sexes showed enhanced sensorimotor recovery and reduced brain damage. RNA-sequencing analysis showed that improved poststroke functional outcome in FosDT−/− rats is partially associated with curtailed induction of inflammatory genes, reduced apoptosis, mitochondrial dysfunction, and oxidative stress. Conclusions: Our study shows that FosDT is developmentally dispensable, mechanistically important, and a functionally promising target to reduce ischemic brain damage and facilitate neurological recovery.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-fos/genética , RNA Longo não Codificante/genética , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/genética , Animais , Encéfalo/metabolismo , Feminino , Masculino , Proteínas Proto-Oncogênicas c-fos/deficiência , RNA Longo não Codificante/biossíntese , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Acidente Vascular Cerebral/fisiopatologia
3.
Stroke ; 51(10): 3138-3141, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32819195

RESUMO

BACKGROUND AND PURPOSE: Increased expression of α-Syn (α-Synuclein) is known to mediate secondary brain damage after stroke. We presently studied if α-Syn knockdown can protect ischemic brain irrespective of sex and age. METHODS: Adult and aged male and female mice were subjected to transient middle cerebral artery occlusion. α-Syn small interfering RNA (siRNA) was administered intravenous at 30 minutes or 3 hour reperfusion. Poststroke motor deficits were evaluated between day 1 and 7 and infarct volume was measured at day 7 of reperfusion. RESULTS: α-Syn knockdown significantly decreased poststroke brain damage and improved poststroke motor function recovery in adult and aged mice of both sexes. However, the window of therapeutic opportunity for α-Syn siRNA is very limited. CONCLUSIONS: α-Syn plays a critical role in ischemic brain damage and preventing α-Syn protein expression early after stroke minimizes poststroke brain damage leading to better functional outcomes irrespective of age and sex.


Assuntos
Encéfalo/patologia , Infarto da Artéria Cerebral Média/genética , Acidente Vascular Cerebral/genética , alfa-Sinucleína/metabolismo , Fatores Etários , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , RNA Interferente Pequeno , Recuperação de Função Fisiológica , Fatores Sexuais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , alfa-Sinucleína/genética
4.
Stroke ; 50(10): 2912-2921, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31436138

RESUMO

Background and Purpose- Adenosine in many types of RNAs can be converted to m6A (N6-methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m6A methylation of RNAs. As recent studies showed that m6A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m6A methylation in mRNAs and lncRNAs. Methods- Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m6A levels were measured by dot blot analysis, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m6A changes after stroke. Expression of m6A writers, readers, and erasers was also estimated in the ischemic brain. Results- Global m6A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m6A methylated mRNAs. The m6A writers were unaltered, but the m6A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions- This is the first study to show that stroke alters the cerebral m6A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview- An online visual overview is available for this article.


Assuntos
Adenosina/metabolismo , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/metabolismo , RNA/metabolismo , Animais , Encéfalo/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
5.
Stroke ; 50(9): 2513-2521, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31327315

RESUMO

Background and Purpose- Epigenetics play a significant role in brain pathologies. We currently evaluated the role of a recently discovered brain-enriched epigenetic modification known as 5-hydroxymethylcytosine (5hmC) in regulating transcriptomic and pathogenic mechanisms after focal ischemic injury. Methods- Young and aged male and female mice were subjected to transient middle cerebral artery occlusion, and the peri-infarct region was analyzed at various times of reperfusion. Two days before middle cerebral artery occlusion, short-interfering RNA against an isoform of the 5hmC producing enzyme TET (ten-eleven translocase) was injected intracerebrally. Ascorbate was injected intraperitoneally at 5 minutes, 30 minutes, or 2 hours of reperfusion. Motor function was tested with rotarod and beam-walk test. Results- Focal ischemia rapidly induced the activity of TET, the enzyme that catalyzes the formation of 5hmC and preferentially increased expression of the TET3 isoform in the peri-infarct region of the ischemic cortex. Levels of 5hmC were increased in a TET3-dependent manner, and inhibition of TET3 led to wide-scale reductions in the postischemic expression of neuroprotective genes involved in antioxidant defense and DNA repair. TET3 knockdown in adult male and female mice further increased brain degeneration after focal ischemia, demonstrating a role for TET3 and 5hmC in endogenous protection against stroke. Ascorbate treatment after focal ischemia enhanced TET3 activity and 5hmC enrichment in the peri-infarct region. TET3 activation by ascorbate provided robust protection against ischemic injury in young and aged mice of both sexes. Moreover, ascorbate treatment improved motor function recovery in both male and female mice. Conclusions- Collectively, these results indicate the potential of TET3 and 5hmC as novel stroke therapeutic targets. Visual Overview- An online visual overview is available for this article.


Assuntos
5-Metilcitosina/análogos & derivados , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Acidente Vascular Cerebral/metabolismo , 5-Metilcitosina/metabolismo , Fatores Etários , Animais , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Infarto da Artéria Cerebral Média/genética , Masculino , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Acidente Vascular Cerebral/genética
6.
Cell Physiol Biochem ; 44(4): 1360-1369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186705

RESUMO

BACKGROUND/AIMS: Stem cell treatment is one of the potential treatment options for ischemic stroke. We recently demonstrated a protective effect of human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) in a rat model of ischemic stroke. The treatment attenuated apoptosis and prevented DNA damage. A collection of published studies, including several from our laboratory, indicated the induction and detrimental role for several matrix metalloproteinases (MMPs) in post-stroke brain injury. We hypothesized that the HUCB-MSCs treatment after focal cerebral ischemia prevents the dysregulation of MMPs and induces the expression of endogenous tissue inhibitors of metalloproteinases (TIMPs) to neutralize the elevated activity of MMPs. METHODS: To test our hypothesis, we administered HUCB-MSCs (0.25 million cells/animal and 1 million cells/animal) intravenously via tail vein to male Sprague-Dawley rats that were subjected to a transient (two-hour) right middle cerebral artery occlusion (MCAO) and one-day reperfusion. Ischemic brain tissues obtained from various groups of rats seven days after reperfusion were subjected to real-time PCR, immunoblot, and immunofluorescence analysis. RESULTS: HUCB-MSCs treatment prevented the induction of MMPs, which were upregulated in ischemia-induced rats that received no treatment. HUCB-MSCs treatment also prevented the induction of TIMPs expression. The extent of prevention of MMPs and TIMPs induction by HUCB-MSCs treatment is similar at both the doses tested. CONCLUSION: Prevention of stroke-induced MMPs upregulation after HUCB-MSCs treatment is not mediated through TIMPs upregulation.


Assuntos
Metaloproteinases da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais , Acidente Vascular Cerebral/terapia , Inibidores Teciduais de Metaloproteinases/metabolismo , Animais , Modelos Animais de Doenças , Sangue Fetal/citologia , Masculino , Metaloproteinases da Matriz/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Artéria Cerebral Média/lesões , Ratos , Ratos Sprague-Dawley , Inibidores Teciduais de Metaloproteinases/genética , Regulação para Cima/efeitos dos fármacos
7.
Stroke ; 46(12): 3523-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26534974

RESUMO

BACKGROUND AND PURPOSE: Matrix metalloproteinases (MMPs) have a central role in compromising the integrity of the blood-brain barrier (BBB). The role of MMP-12 in brain damage after ischemic stroke remains unknown. The main objective of the current study is to investigate the effect of MMP-12 suppression at an early time point before reperfusion on the BBB damage in rats. METHODS: Sprague-Dawley rats were subjected to middle cerebral artery occlusion and reperfusion. MMP-12 shRNA-expressing plasmids formulated as nanoparticles were administered at a dose of 1 mg/kg body weight. The involvement of MMP-12 on BBB damage was assessed by performing various techniques, including Evans blue dye extravasation, 2,3,5-triphenyltetrazolium chloride staining, immunoblot, gelatin zymography, and immunofluorescence analysis. RESULTS: MMP-12 is upregulated ≈31-, 47-, and 66-fold in rats subjected 1-, 2-, or 4-hour ischemia, respectively, followed by 1-day reperfusion. MMP-12 suppression protected the BBB integrity by inhibiting the degradation of tight-junction proteins. Either intravenous or intra-arterial delivery of MMP-12 shRNA-expressing plasmid significantly reduced the percent Evans blue dye extravasation and infarct size. Furthermore, MMP-12 suppression reduced the endogenous levels of other proteases, such as tissue-type plasminogen activator and MMP-9, which are also known to be the key players involved in BBB damage. CONCLUSIONS: These results demonstrate the adverse role of MMP-12 in acute brain damage that occurs after ischemic stroke and, thereby, suggesting that MMP-12 suppression could be a promising therapeutic target for cerebral ischemia.


Assuntos
Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/patologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Metaloproteinase 12 da Matriz/biossíntese , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Ratos , Ratos Sprague-Dawley
8.
Neurochem Res ; 39(8): 1511-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879430

RESUMO

Evidence suggests that apoptosis contributes significantly to cell death after cerebral ischemia. Our recent studies that utilized human umbilical cord blood-derived mesenchymal stem cells (hUCBSCs) demonstrated the potential of hUCBSCs to inhibit neuronal apoptosis in a rat model of CNS injury. Therefore, we hypothesize that intravenous administration of hUCBSCs after focal cerebral ischemia would reduce brain damage by inhibiting apoptosis and downregulating the upregulated apoptotic pathway molecules. Male Sprague-Dawley rats were obtained and randomly assigned to various groups. After the animals reached a desired weight, they were subjected to a 2 h middle cerebral artery occlusion (MCAO) procedure followed by 7 days of reperfusion. The hUCBSCs were obtained, cultured, and intravenously injected (0.25 × 10(6) cells or 1 × 10(6) cells) via the tail vein to separate groups of animals 24 h post-MCAO procedure. We performed various techniques including PCR microarray, hematoxylin and eosin, and TUNEL staining in addition to immunoblot and immunofluorescence analysis in order to investigate the effect of our treatment on regulation of apoptosis after focal cerebral ischemia. Most of the apoptotic pathway molecules which were upregulated after focal cerebral ischemia were downregulated after hUCBSCs treatment. Further, the staining techniques revealed a prominent reduction in brain damage and the extent of apoptosis at even the lowest dose of hUCBSCs tested in the present study. In conclusion, our treatment with hUCBSCs after cerebral ischemia in the rodent reduces brain damage by inhibiting apoptosis and downregulating the apoptotic pathway molecules.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Apoptose/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Transplante de Células-Tronco/tendências , Animais , Isquemia Encefálica/patologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
9.
Neurochem Int ; 178: 105795, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908519

RESUMO

Preconditioning-induced cerebral ischemic tolerance is known to be a beneficial adaptation to protect the brain in an unavoidable event of stroke. We currently demonstrate that a short bout (6 weeks) of intermittent fasting (IF; 15 h fast/day) induces similar ischemic tolerance to that of a longer bout (12 weeks) in adult C57BL/6 male mice subjected to transient middle cerebral artery occlusion (MCAO). In addition, the 6 weeks IF regimen induced ischemic tolerance irrespective of age (3 months or 24 months) and sex. Mice subjected to transient MCAO following IF showed improved motor function recovery (rotarod and beam walk tests) between days 1 and 14 of reperfusion and smaller infarcts (T2-MRI) on day 1 of reperfusion compared with age/sex matched ad libitum (AL) controls. Diet influences the gut microbiome composition and stroke is known to promote gut bacterial dysbiosis. We presently show that IF promotes a beneficial phenotype of gut microbiome following transient MCAO compared with AL cohort. Furthermore, post-stroke levels of short-chain fatty acids (SCFAs), which are known to be neuroprotective, are higher in the fecal samples of the IF cohort compared with the AL cohort. Thus, our studies indicate the efficacy of IF in protecting the brain after stroke, irrespective of age and sex, probably by altering gut microbiome and SCFA production.

10.
J Cereb Blood Flow Metab ; 44(2): 239-251, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37933735

RESUMO

We previously showed that knockdown or deletion of Fos downstream transcript (FosDT; a stroke-induced brain-specific long noncoding RNA) is neuroprotective. We presently tested the therapeutic potential of FosDT siRNA in rodents subjected to transient middle cerebral artery occlusion (MCAO) using the Stroke Treatment Academic Industry Roundtable criteria, including sex, age, species, and comorbidity. FosDT siRNA (IV) given at 30 min of reperfusion significantly improved motor function recovery (rotarod test, beam walk test, and adhesive removal test) and reduced infarct size in adult and aged spontaneously hypertensive rats of both sexes. FosDT siRNA administered in a delayed fashion (3.5 h of reperfusion following 1 h transient MCAO) also significantly improved motor function recovery and decreased infarct volume. Furthermore, FosDT siRNA enhanced post-stroke functional recovery in normal and diabetic mice. Mechanistically, FosDT triggered post-ischemic neuronal damage via the transcription factor REST as REST siRNA mitigated the enhanced functional outcome in FosDT-/- rats. Additionally, NF-κB regulated FosDT expression as NF-κB inhibitor BAY 11-7082 significantly decreased post-ischemic FosDT induction. Thus, FosDT is a promising target with a favorable therapeutic window to mitigate secondary brain damage and facilitate recovery after stroke regardless of sex, age, species, and comorbidity.


Assuntos
Isquemia Encefálica , Diabetes Mellitus Experimental , Fármacos Neuroprotetores , RNA Longo não Codificante , Acidente Vascular Cerebral , Masculino , Feminino , Ratos , Camundongos , Animais , RNA Longo não Codificante/genética , NF-kappa B/metabolismo , Acidente Vascular Cerebral/complicações , Infarto da Artéria Cerebral Média/complicações , Ratos Endogâmicos SHR , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia
11.
BMC Cancer ; 13: 590, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24325546

RESUMO

BACKGROUND: Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9ß1 signaling. Our recent studies have clearly demonstrated the role of α9ß1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9ß1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. METHODS: MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. RESULTS: Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions of cSrc, phosphoSrc and p130Cas were reduced with simultaneous knockdown of both MMP-9 and uPAR. CONCLUSIONS: Taken together, our results from the present and earlier studies clearly demonstrate that α9ß1 integrin-mediated cell migration utilizes the iNOS pathway, and inhibition of the migratory potential of glioma cells by simultaneous knockdown of MMP-9 and uPAR could be attributed to the reduced α9ß1 integrin and iNOS levels.


Assuntos
Movimento Celular , Glioma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Óxido Nítrico Sintase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Integrinas/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Interferência de RNA , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
12.
Methods Mol Biol ; 2616: 419-425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715950

RESUMO

RNA interference is a promising strategy to degrade target RNAs of interest after stroke using small interfering RNA (siRNA). An optimized targeting such as combining a siRNA with a nontoxic transfection reagent that facilitates the effective delivery of siRNAs to the brain and subsequent cellular uptake after stroke is needed. Furthermore, an appropriate route of administration such as intravenous (tail vein or retro-orbital sinus) or cerebroventricular injection has to be used. Using siRNAs tagged with fluorescent probes shows the cellular uptake of siRNA. Efficacy and window of opportunity for a siRNA needs to be determined by testing multiple doses and time frame that alters the long-term functional outcomes. Real-time PCR/western blots can be used to determine the siRNA efficiency by evaluating the knockdown of the RNA/protein of interest. In siRNA studies, it is also essential to identify a proper dose (efficacious, but not toxic) by histopathologic testing to identify any toxicity in the peripheral organs and CNS. This chapter describes the strategies to deliver siRNAs to treat stroke and to facilitate post-stroke long-term recovery.


Assuntos
Encéfalo , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Interferência de RNA , Transfecção , Encéfalo/metabolismo
13.
Neuromolecular Med ; 25(1): 94-101, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36447045

RESUMO

Post-stroke secondary brain damage is significantly influenced by the induction and accumulation of α-Synuclein (α-Syn). α-Syn-positive inclusions are often present in tauopathies and elevated tau levels and phosphorylation promotes neurodegeneration. Glycogen synthase kinase 3ß (GSK-3ß) is a known promoter of tau phosphorylation. We currently evaluated the interaction of α-Syn with GSK-3ß and tau in post-ischemic mouse brain. Transient focal ischemia led to increased cerebral protein-protein interaction of α-Syn with both GSK-3ß and tau and elevated tau phosphorylation. Treatment with a GSK-3ß inhibitor prevented post-ischemic tau phosphorylation. Furthermore, α-Syn interaction was observed to be crucial for post-ischemic GSK-3ß-dependent tau hyperphosphorylation as it was not seen in α-Syn knockout mice. Moreover, tau knockout mice show significantly smaller brain damage after transient focal ischemia. Overall, the present study indicates that GSK-3ß catalyzes the α-Syn-dependent tau phosphorylation and preventing this interaction is crucial to limit post-ischemic secondary brain damage.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Glicogênio Sintase Quinase 3 beta , Acidente Vascular Cerebral/complicações , Encéfalo/metabolismo , Camundongos Knockout , Fosforilação
14.
Transl Stroke Res ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129636

RESUMO

The microRNA-21 (miR-21) levels in the brain are crucial in determining post-stroke brain damage and recovery. The miR-21 exerts neuroprotection by targeting mRNAs that translate proteins that mediate brain damage. We currently determined the efficacy and efficiency of intravenously administered miR-21 mimic after focal cerebral ischemia in mice. Adult male mice were intravenously administered with either control mimic or miR-21 mimic at 5 min/2 h after reperfusion following 1 h transient middle cerebral artery occlusion to determine the therapeutic window of miR-21 mimic. Adult female, type-2 diabetic male, aged male, and aged female mice were administered with control/miR-21 mimic at 5 min after reperfusion following 35 min/1 h transient middle cerebral artery occlusion. Early administration of miR-21 mimic significantly reduced brain damage and promoted long-term recovery after stroke. Further, miR-21 mimic is more effective in males than in females subjected to stroke. However, delayed treatment with miR-21 mimic is not efficacious, and type-2 diabetic subjects show no improvement with miR-21 mimic treatment.

15.
Mol Ther Nucleic Acids ; 31: 57-67, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36618263

RESUMO

Transient focal ischemia decreased microRNA-7 (miR-7) levels, leading to derepression of its major target α-synuclein (α-Syn) that promotes secondary brain damage. Circular RNA CDR1as is known to regulate miR-7 abundance and function. Hence, we currently evaluated its functional significance after focal ischemia. Transient middle cerebral artery occlusion (MCAO) in adult mice significantly downregulated both CDR1as and miR-7 levels in the peri-infarct cortex between 3 and 72 h of reperfusion. Interestingly, neither pri-miR-7a nor 7b was altered in the ischemic brain. Intracerebral injection of an AAV9 vector containing a CDR1as gene significantly increased CDR1as levels by 21 days that persisted up to 4 months without inducing any observable toxicity in both sham and MCAO groups. Following transient MCAO, there was a significant increase in miR-7 levels and CDR1as binding to Ago2/miR-7 in the peri-infarct cortex of AAV9-CDR1as cohort compared with AAV9-Control cohort at 1 day of reperfusion. CDR1as overexpression significantly suppressed post-stroke α-Syn protein induction, promoted motor function recovery, decreased infarct size, and curtailed the markers of apoptosis, autophagy mitochondrial fragmentation, and inflammation in the post-stroke brain compared with AAV9-Control-treated cohort. Overall, our findings imply that CDR1as reconstitution is neuroprotective after stroke, probably by protecting miR-7 and preventing α-Syn-mediated neuronal death.

16.
J Cereb Blood Flow Metab ; 42(9): 1597-1602, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35702025

RESUMO

Stroke leads to gut bacterial dysbiosis that impacts the post-stroke outcome. The gut microbiome also contains a high abundance of viruses which might play a crucial role in disease progression and recovery by modulating the metabolism of both host and host's gut bacteria. We presently analyzed the virome composition (viruses and phages) by shotgun metagenomics in the fecal samples obtained at 1 day of reperfusion following transient focal ischemia in adult mice. Viral genomes, viral auxiliary metabolic genes, and viral protein networks were compared between stroke and sham conditions (stroke vs sham, exclusive to sham and exclusive to stroke). Following focal ischemia, abundances of 2 viral taxa decreased, and 5 viral taxa increased compared with the sham. Furthermore, the abundance of Clostridia-like phages and Erysipelatoclostridiaceae-like phages were altered in the stroke compared with the sham cohorts. This is the first report to show that the gut virome responds acutely to stroke.


Assuntos
Bacteriófagos , Isquemia Encefálica , Microbioma Gastrointestinal , Vírus , Animais , Bactérias , Disbiose , Metagenômica , Camundongos , Viroma , Vírus/genética
17.
Neurochem Int ; 161: 105432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252818

RESUMO

We previously reported that increased expression of matrix metalloproteinase-12 (MMP-12) mediates blood-brain barrier disruption via tight junction protein degradation after focal cerebral ischemia in rats. Currently, we evaluated whether MMP-12 knockdown protects the post-stroke mouse brain and promotes better functional recovery. Adult male mice were injected with negative siRNA or MMP-12 siRNA (intravenous) at 5 min of reperfusion following 1 h transient middle cerebral artery occlusion. MMP-12 knockdown significantly reduced the post-ischemic infarct volume and improved motor and cognitive functional recovery. Mechanistically, MMP-12 knockdown ameliorated degradation of tight junction proteins zonula occludens-1, claudin-5, and occludin after focal ischemia. MMP-12 knockdown also decreased the expression of inflammatory mediators, including monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-6, and the expression of apoptosis marker cleaved caspase-3 after ischemia. Overall, the present study indicates that MMP-12 promotes secondary brain damage after stroke and hence is a promising stroke therapeutic target.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Ocludina/metabolismo , RNA Interferente Pequeno , Acidente Vascular Cerebral/metabolismo
18.
J Cereb Blood Flow Metab ; 42(2): 253-263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689646

RESUMO

The role of tenascin-C (TNC) in ischemic stroke pathology is not known despite its prognostic association with cerebrovascular diseases. Here, we investigated the effect of TNC knockdown on post-stroke brain damage and its putative mechanism of action in adult mice of both sexes. Male and female C57BL/6 mice were subjected to transient middle cerebral artery occlusion and injected (i.v.) with either TNC siRNA or a negative (non-targeting) siRNA at 5 min after reperfusion. Motor function (beam walk and rotarod tests) was assessed between days 1 and 14 of reperfusion. Infarct volume (T2-MRI), BBB damage (T1-MRI with contrast), and inflammatory markers were measured at 3 days of reperfusion. The TNC siRNA treated cohort showed significantly curtailed post-stroke TNC protein expression, motor dysfunction, infarction, BBB damage, and inflammation compared to the sex-matched negative siRNA treated cohort. These results demonstrate that the induction of TNC during the acute period after stroke might be a mediator of post-ischemic inflammation and secondary brain damage independent of sex.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , AVC Isquêmico/metabolismo , Tenascina/metabolismo , Animais , Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Feminino , AVC Isquêmico/patologia , Masculino , Camundongos
19.
Neurochem Int ; 142: 104908, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220386

RESUMO

Stroke leads to significant neuronal death and long-term neurological disability due to synergistic pathogenic mechanisms. Stroke induces a change in eating habits and in many cases, leads to undernutrition that aggravates the post-stroke pathology. Proper nutritional regimen remains a major strategy to control the modifiable risk factors for cardiovascular and cerebrovascular diseases including stroke. Studies indicate that nutraceuticals (isolated and concentrated form of high-potency natural bioactive substances present in dietary nutritional components) can act as prophylactic as well as adjuvant therapeutic agents to prevent stroke risk, to promote ischemic tolerance and to reduce post-stroke consequences. Nutraceuticals are also thought to regulate blood pressure, delay neurodegeneration and improve overall vascular health. Nutraceuticals potentially mediate these effects by their powerful antioxidant and anti-inflammatory properties. This review discusses the studies that have highlighted the translational potential of nutraceuticals as stroke therapies.


Assuntos
Encéfalo/metabolismo , Suplementos Nutricionais , Neuroproteção/fisiologia , Acidente Vascular Cerebral/dietoterapia , Acidente Vascular Cerebral/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Encéfalo/patologia , Transtornos Cerebrovasculares/dietoterapia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/prevenção & controle , Humanos , Acidente Vascular Cerebral/patologia
20.
Stroke Vasc Neurol ; 6(4): 519-527, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33741744

RESUMO

BACKGROUND AND PURPOSE: The therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury. METHODS: Transient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke. RESULTS: The infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males). CONCLUSIONS: Despite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


Assuntos
Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Feminino , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA