Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 43(3): 600-608, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29260493

RESUMO

It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.


Assuntos
Cognição/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Melatonina/farmacologia , Neurogênese/efeitos dos fármacos , Escopolamina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Giro Denteado/citologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos
2.
Neurochem Res ; 42(8): 2305-2313, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349361

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a key downstream protein in the PI3K/Akt pathway. Phosphorylation of serine 9 of GSK-3ß (GSK-3ß activity inhibition) promotes cell survival. In this study, we examined changes in expressions of GSK-3ß and phosphorylation of GSK-3ß (p-GSK-3ß) in the gerbil hippocampal CA1 area after 5 min of transient cerebral ischemia. GSK-3ß immunoreactivity in the CA1 area was increased in pyramidal cells at 6 h after ischemia-reperfusion. It was decreased in CA1 pyramidal cells from 12 h after ischemia-reperfusion, and hardly detected in the CA1 pyramidal cells at 5 days after ischemia-reperfusion. p-GSK-3ß immunoreactivity was slightly decreased in CA1 pyramidal cells at 6 and 12 h after ischemia-reperfusion. It was significantly increased in these cells at 1 and 2 days after ischemia-reperfusion. Five days after ischemia-reperfusion, p-GSK-3ß immunoreactivity was hardly found in CA1 pyramidal cells. However, p-GSK-3ß immunoreactivity was strongly expressed in astrocytes primarily distributed in strata oriens and radiatum. In conclusion, GSK-3ß and p-GSK-3ß were significantly changed in pyramidal cells and/or astrocytes in the gerbil hippocampal CA1 area following 5 min of transient cerebral ischemia. This finding indicates that GSK-3ß and p-GSK-3ß are closely related to delayed neuronal death.


Assuntos
Astrócitos/enzimologia , Isquemia Encefálica/enzimologia , Região CA1 Hipocampal/enzimologia , Regulação Enzimológica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/biossíntese , Células Piramidais/enzimologia , Animais , Astrócitos/química , Astrócitos/patologia , Aprendizagem da Esquiva/fisiologia , Isquemia Encefálica/patologia , Região CA1 Hipocampal/química , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Gerbillinae , Glicogênio Sintase Quinase 3 beta/análise , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Células Piramidais/química , Células Piramidais/patologia
3.
Neurochem Res ; 41(8): 1958-68, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27053301

RESUMO

Tanshinone I (TsI), a lipophilic diterpene extracted from Danshan (Radix Salvia miltiorrhizae), exerts neuroprotection in cerebrovascular diseases including transient ischemic attack. In this study, we examined effects of TsI on cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the mouse dentate gyrus (DG) using Ki-67, BrdU and doublecortin (DCX) immunohistochemistry. Mice were treated with 1 and 2 mg/kg TsI for 28 days. In the 1 mg/kg TsI-treated-group, distribution patterns of BrdU, Ki-67 and DCX positive ((+)) cells in the SGZ were similar to those in the vehicle-treated-group. However, in the 2 mg/kg TsI-treated-group, double labeled BrdU(+)/NeuN(+) cells, which are mature neurons, as well as Ki-67(+), DCX(+) and BrdU(+) cells were significantly increased compared with those in the vehicle-treated-group. On the other hand, immunoreactivities and protein levels of Wnt-3, ß-catenin and serine-9-glycogen synthase kinase-3ß (p-GSK-3ß), which are related with morphogenesis, were significantly increased in the granule cell layer of the DG only in the 2 mg/kg TsI-treated-group. Therefore, these findings indicate that TsI can promote neurogenesis in the mouse DG and that the neurogenesis is related with increases of Wnt-3, p-GSK-3ß and ß-catenin immunoreactivities.


Assuntos
Abietanos/farmacologia , Giro Denteado/metabolismo , Glicogênio Sintase Quinase 3 beta/biossíntese , Neurogênese/fisiologia , Proteína Wnt3/biossíntese , beta Catenina/biossíntese , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Giro Denteado/química , Giro Denteado/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Duplacortina , Glicogênio Sintase Quinase 3 beta/análise , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Wnt3/análise , beta Catenina/análise
4.
Neurochem Res ; 41(9): 2380-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27209305

RESUMO

Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.


Assuntos
Acetamidas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Gerbillinae , Hipocampo/metabolismo , Lacosamida , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo
5.
Neurochem Res ; 40(4): 864-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676337

RESUMO

Calcium binding proteins play important roles in all aspects of neural functioning in the central nervous system. In the present study, we examined age-related changes of three different calcium binding proteins calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV) immunoreactivities in the striatum of young (1 month), adult (6 months) and aged (24 months) ages in three species of rodents (mouse, rat and gerbil) using immunohistochemistry and Western blotting. Our results show that the number of CB-immunoreactive neurons was highest in the adult mouse and rat; however, in the gerbil, the number of CB-immunoreactive neurons was not significantly different from each group although the CB immunoreactivity was significantly decreased in the aged group compared with the adult group. The number of CR-immunoreactive neurons in the striatum was significantly highest in all the adult groups, and, especially, the number of CR-immunoreactive neurons and CR immunoreactivity in the aged gerbil were significantly decreased in the aged group compared with the other groups. Finally, we did not found any significant difference in the number of PV-immunoreactive neurons in the striatum with age among the three rodents. On the other hand, we found that protein levels of three calcium binding proteins in all the mouse groups were similar to the immunohistochemical data. These results indicate that the distribution pattern of calcium binding proteins is different according to age; the adult might show an apparent tendency of high expression in the striatum.


Assuntos
Fatores Etários , Calbindina 1/metabolismo , Calbindina 2/metabolismo , Corpo Estriado/metabolismo , Parvalbuminas/metabolismo , Animais , Western Blotting , Gerbillinae , Camundongos , Ratos
6.
Neurochem Res ; 40(9): 1984-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26290267

RESUMO

Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.


Assuntos
Isquemia Encefálica/patologia , Citocinas/fisiologia , Hipocampo/patologia , Precondicionamento Isquêmico , Animais , Citocinas/metabolismo , Gerbillinae
7.
Neurochem Res ; 39(4): 770-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24577837

RESUMO

Insulin-like growth factor-I (IGF-I) is a multifunctional polypeptide and has diverse effects on brain functions. In the present study, we compared IGF-I and IGF-I receptor (IGF-IR) immunoreactivity and their protein levels between the adult (postnatal month 6) and aged (postnatal month 24) mouse hippocampus and somatosensory cortex. In the adult hippocampus, IGF-I immunoreactivity was easily observed in the pyramidal cells of the stratum pyramidale in the hippocampus proper and in the granule cells of the granule cell layer of the dentate gyrus. In the adult somatosensory cortex, IGF-I immunoreactivity was easily found in the pyramidal cells of layer V. In the aged groups, IGF-I expression was dramatically decreased in the cells. Like the change of IGF-I immunoreactivity, IGF-IR immunoreactivity in the pyramidal and granule cells of the hippocampus and in the pyramidal cells of the somatosensory cortex was also markedly decreased in the aged group. In addition, both IGF-I and IGF-IR protein levels were significantly decreased in the aged hippocampus and somatosensory cortex. These results indicate that the apparent decrease of IGF-I and IGF-IR expression in the aged mouse hippocampus and somatosensory cortex may be related to age-related changes in the aged brain.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/biossíntese , Receptor IGF Tipo 1/biossíntese , Córtex Somatossensorial/metabolismo , Envelhecimento/patologia , Animais , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Córtex Somatossensorial/patologia
8.
Neurochem Res ; 39(7): 1300-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760430

RESUMO

Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia-reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.


Assuntos
Abietanos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Isquemia Encefálica/prevenção & controle , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Abietanos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
9.
Brain Res ; 1825: 148705, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065285

RESUMO

The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.


Assuntos
Agrina , Proteínas Relacionadas a Receptor de LDL , Proteínas Relacionadas a Receptor de LDL/metabolismo , Agrina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Junção Neuromuscular/metabolismo
10.
Int Immunopharmacol ; 127: 111379, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141409

RESUMO

Microglial activation and autophagy play a critical role in the progression of ischemic stroke and contribute to the regulation of neuroinflammation. Unc-51-like kinase 1 (ULK1) is the primary autophagy kinase involved in autophagosome formation. However, the impact of ULK1 on neuroprotection and microglial activation after ischemic stroke remains unclear. In this study, we established a photothrombotic stroke model, and administered SBI-0206965 (SBI), an ULK1 inhibitor, and LYN-1604 hydrochloride (LYN), an ULK1 agonist, to modulate ULK1 activity in vivo. We assessed sensorimotor deficits, neuronal apoptosis, and microglial/macrophage activation to evaluate the neurofunctional outcome. Immunofluorescence results revealed ULK1 was primarily localized in the microglia of the infarct area following ischemia. Upregulating ULK1 through LYN treatment significantly reduced infarct volume, improved motor function, promoted the increase of anti-inflammatory microglia. In conclusion, ULK1 facilitated neuronal repair and promoted the formation of anti-inflammatory microglia pathway after ischemic injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , AVC Isquêmico/metabolismo , Neuroproteção , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Ativação de Macrófagos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Macrófagos/metabolismo , Infarto/metabolismo , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Neurochem Res ; 38(9): 1980-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836293

RESUMO

Apripiprazole (APZ) is well known as an atypical antipsychotic and antidepressant. In the present study, we investigated effects of APZ on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the adolescent mouse using BruU, Ki-67 and doublecortin (DCX) immunohistochemistry. BruU, Ki-67 and DCX-positive (+) cells were easily detected in the subgranular zone of the DG in the vehicle- and APZ-treated group. We found that in the 8 mg/kg APZ-treated group numbers of Ki-67(+), DCX(+) and BrdU(+)/DCX(+) cells were significantly increased compared with those in the vehicle-treated group. We also found that maturation and complexity of DCX(+) dendrites in the 8 mg/kg APZ-treated group was well improved compared with those in the vehicle-treated group. In addition, markedly decreased lipid peroxidation and increased superoxide dismutase 2 (SOD2) level were observed in the DG of the 8 mg/kg APZ-treated group. Our present findings indicate that APZ can enhance cell proliferation and neuroblast differentiation, particularly maturation and complexity of neuroblast dendrites, in the DG via decreasing lipid peroxidation and increasing SOD2 level.


Assuntos
Antipsicóticos/farmacologia , Giro Denteado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piperazinas/farmacologia , Quinolonas/farmacologia , Superóxido Dismutase/metabolismo , Animais , Aripiprazol , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/enzimologia , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos ICR
12.
ACS Chem Neurosci ; 14(11): 1992-2007, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161270

RESUMO

Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Gliose/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Microglia , Doenças Neuroinflamatórias , Camundongos Endogâmicos ICR , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
13.
Exp Neurol ; 362: 114323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690057

RESUMO

In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.


Assuntos
AVC Isquêmico , Remielinização , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neuregulina-1/metabolismo , Camundongos Endogâmicos ICR , Transdução de Sinais , Oligodendroglia/metabolismo , Proliferação de Células
14.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34212986

RESUMO

Tumor necrosis factor (TNF)­α and TNF receptor 1 (TNF­R1) play diverse roles in modulating the neuronal damage induced by cerebral ischemia. The present study compared the time­dependent changes of TNF­α and TNF­R1 protein expression levels in the hippocampal subfield cornu ammonis 1 (CA1) between adult and young gerbils following transient forebrain ischemia (tFI), via western blot and immunohistochemistry analyses. In adult gerbils, delayed neuronal death of pyramidal neurons, the principal neurons in CA1, was recorded 4 days after tFI; however, in young gerbils, delayed neuronal death was recorded 7 days after tFI. TNF­α protein expression levels gradually increased in both groups following tFI; however, TNF­α expression was higher in young gerbils compared with adult gerbils. TNF­R1 protein expression levels markedly increased in both groups 1 day after tFI. Subsequently, TNF­R1 expression gradually decreased in young gerbils, whereas TNF­R1 expression levels were irregularly altered in adult gerbils following tFI. Notably, TNF­α immunoreactivity significantly increased in pyramidal neurons in both groups 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­α immunoreactivity was rarely exhibited in pyramidal neurons 4 days after tFI due to neuronal death, suggesting that TNF­α immunoreactivity was newly expressed in astrocytes. In young gerbils, TNF­α immunoreactivity increased in pyramidal neurons 4 days after tFI, and TNF­α immunoreactivity was newly expressed in astrocytes. In addition, TNF­R1 immunoreactivity was exhibited in pyramidal cells of both sham groups, and significantly increased 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­R1 immunoreactivity was rarely exhibited 4 days after tFI, and astrocytes newly expressed TNF­R1 immunoreactivity. In young gerbils, TNF­R1 immunoreactivity increased in pyramidal neurons 4 days after tFI; however, TNF­R1 immunoreactivity was not reported in pyramidal neurons and astrocytes thereafter. Taken together, the results of the present study suggest that different expression levels of TNF­α and TNF­R1 in ischemic CA1 between adult and young gerbils may be due to age­dependent differences of tFI­induced neuronal death.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Gerbillinae/metabolismo , Neurônios/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Isquemia Encefálica/patologia , Morte Celular , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Isquemia/patologia , Masculino , Neurogênese , Prosencéfalo , Células Piramidais/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética
15.
Lab Anim Res ; 37(1): 11, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676586

RESUMO

BACKGROUND: Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. RESULTS: Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. CONCLUSIONS: Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.

16.
Kaohsiung J Med Sci ; 35(11): 672-678, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31373750

RESUMO

Dexmedetomidine (DEX) can protect the lung from ischemia-reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. The aims of this study were to determine whether DEX attenuates lung injury following lower extremity I/R and to investigate the related toll-like receptor 4 (TLR4) signaling pathway. Twenty-eight SD rats were divided into four groups (n = 7): Sham, I/R, I/R + DEX (25 µg/kg prior to ischemia), and I/R + DEX + Atip (250 µg/kg atipamezole before DEX treatment). Lower extremity I/R was induced by left femoral artery clamping for 3 hours and followed by 2 hours reperfusion. Quantitative alveolar damage and the wet/dry (W/D) ratio were calculated. Interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) and serum and myeloperoxidase (MPO) in the lung were measured. The TLR4 and MyD88 mRNA expression levels were measured by RT-PCR, nuclear factor (NF)-κB, and phosphorylated NF-κB by western blot, respectively. Quantitative alveolar damage, W/D ratio, MPO, BALF and serum IL-1, IL-6, and TNF-α, and TLR4, MyD88, NF-κB, and p-NF-κB expression significantly increased in the I/R group relative to the Sham group. DEX preconditioning significantly reduced lung edema, and histological injury relative to the I/R group. Serum and BALF IL-1, IL-6, and TNF-α levels, MPO activity and TLR4, MyD88, NF-κB, and p-NF-κB expression were also significantly reduced in the I/R + DEX group compared with the I/R group. Atipamezole partially reversed all the aforementioned effects. DEX preconditioning protects the lungs against lower extremity I/R injury via α2-adrenoceptor-dependent and α2-adrenoceptor-independent mechanisms. It also suppresses the TLR4 pathway and reduces inflammation.


Assuntos
Dexmedetomidina/uso terapêutico , Extremidades/patologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Traumatismo por Reperfusão/complicações , Receptor 4 Toll-Like/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/sangue , Dexmedetomidina/farmacologia , Extremidades/irrigação sanguínea , Pulmão/patologia , Lesão Pulmonar/sangue , Masculino , Tamanho do Órgão , Peroxidase/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/sangue , Transdução de Sinais
17.
Chem Biol Interact ; 285: 8-13, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29476728

RESUMO

Animal models of scopolamine-induced amnesia are widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases such as Alzheimer's disease (AD). Previous studies have identified that melatonin improves cognitive dysfunction in animal models. In this study, using a mouse model of scopolamine-induced amnesia, we assessed spatial and short-term memory functions for 4 weeks, investigated the expression of myelin-basic protein (MBP) in the dentate gyrus, and examined whether melatonin and scopolamine cotreatment could keep cognitive function and MBP expression. In addition, to study functions of melatonin for keeping cognitive function and MBP expression, we examined expressions of brain-derived neurotrophic factor (BDNF) and tropomycin receptor kinase B (TrkB) in the mouse dentate gyrus. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally treated for 2 and 4 weeks. Two and 4 weeks after scopolamine treatment, mice showed significant cognitive impairment; however, melatonin and scopolamine cotreatment recovered cognitive impairment. Two and 4 weeks of scopolamine treatment, the density of MBP immunoreactive myelinated nerve fibers was significantly decreased in the dentate gyrus; however, scopolamine and melatonin cotreatment significantly increased the scopolamine-induced reduction of MBP expression in the dentate gyrus. Furthermore, the cotreatment of scopolamine and melatonin significantly increased the scopolamine-induced decrease of BDNF and TrKB immunoreactivity in the dentate gyrus. Taken together, our results indicate that melatonin treatment exerts anti-amnesic effect and restores the scopolamine-induced reduction of MBP expression through increasing BDNF and TrkB expressions in the mouse dentate gyrus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva , Doenças Desmielinizantes/prevenção & controle , Melatonina/farmacologia , Melatonina/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Proteína Básica da Mielina/genética , Escopolamina
18.
Biomed Pharmacother ; 108: 687-697, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245469

RESUMO

Vascular dementia affects cognition by damaging axons and myelin. Melatonin is pharmacologically associated with various neurological disorders. In this study, effects of melatonin on cognitive impairment and related mechanisms were investigated in an animal model of ischemic vascular dementia (IVD). Melatonin was intraperitoneally administered to adult gerbils after transient global cerebral ischemia (tGCI) for 25 days beginning 5 days after tGCI. Cognitive impairment was examined using a passive avoidance test and the Barnes maze test. To investigate mechanisms of restorative effects by melatonin, neuronal damage/death, myelin basic protein (MBP, a marker for myelin), Rip (a marker for oligodendrocyte), extracellular signal-regulated protein kinase1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2), and vesicular glutamate transporter (VGLUT)-1 (a glutamatergic synaptic marker) in the hippocampal Cornu Ammonis 1 area (CA1) were evaluated using immunohistochemistry. Melatonin treatment significantly improved tGCI-induced cognitive impairment. Death of CA1 pyramidal neurons after tGCI was not affected by melatonin treatment. However, melatonin treatment significantly increased MBP immunoreactivity and numbers of Rip-immunoreactive oligodendrocytes in the ischemic CA1. In addition, melatonin treatment significantly increased ERK1/2 and p-ERK1/2 immunoreactivities in oligodendrocytes in the ischemic CA1. Furthermore, melatonin treatment significantly increased VGLUT-1 immunoreactive structures in the ischemic CA1. These results indicate that long-term melatonin treatment after tGCI improves cognitive deficit via restoration of myelin, increase of oligodendrocytes which is closely related to the activation of ERK1/2 signaling, and increase of glutamatergic synapses in the ischemic brain area.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melatonina/farmacologia , Remielinização/efeitos dos fármacos , Sinapses/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Morte Celular/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Gerbillinae , Hipocampo/metabolismo , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/metabolismo , Masculino , Modelos Animais , Bainha de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo
19.
Mol Med Rep ; 17(6): 8161-8166, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29658594

RESUMO

Insulin­like growth factor­I (IGF­I) is a multifunctional protein present in the central nervous system. A number of previous studies have revealed alterations in IGF­I and its receptor (IGF­IR) expression in various regions of the brain. However, there are few reports on age­dependent alterations in IGF­I and IGF­IR expressions in the olfactory bulb, which contains the secondary neurons of the olfactory system. The present study examined the cellular morphology in the olfactory bulb by using cresyl violet (CV) staining at postnatal month (PM) 3 in the young group, PM 6 in the adult group and PM 24 in the aged group in gerbils. In addition, detailed examinations were performed of the protein levels and immunoreactivities of IGF­I and IGF­IR in the olfactory bulb in each group. There were no significant changes in the cellular morphology between the three groups. The protein levels and immunoreactivities of the IGF­I and IGF­IR were the highest in the young group and they decreased with age. He protein levels and immunoreactivities of the IGF­I and IGF­IR were the lowest in the aged group. In brief, our results indicate that IGF­I and IGF­IR expressions are strong in young olfactory bulbs and significantly reduced in aged olfactory bulbs. In conclusion, subsequent decreases in IGF­I and IGF­IR expression with age may be associated with olfactory decline. Further studies are required to investigate the roles of IFG­I and IGF­IR in disorders of the olfactory system.


Assuntos
Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Bulbo Olfatório/metabolismo , Receptor IGF Tipo 1/genética , Fatores Etários , Animais , Gerbillinae , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo
20.
Mol Med Rep ; 17(1): 293-299, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115458

RESUMO

GABAergic projections terminate on numerous hippocampal interneurons containing calcium binding proteins (CBPs), including calbindin D­28k (CB), calretinin (CR) and parvalbumin (PV). Memory deficits and expression levels of CB, CR, and PV were examined in the hippocampal subregions following systemic scopolamine (Scop; 1 mg/kg) treatment for 4 weeks in mice. Scop treatment induced significant memory deficits from 1 week after Scop treatment. CB, CR and PV immunoreactivities distributions were in hippocampal subregions [CA1 and CA3 regions, and the dentate gyrus (DG)]. CB immunoreactivity (CB+) was gradually decreased in all subregions until 2 weeks after Scop treatment, and CB+ was decreased to the lowest level in all subregions at 3 and 4 weeks. CR+ in the CA1 region was gradually decreased until 2 weeks and hardly observed at 3 and 4 weeks; in the CA3 region, CR+ was not altered in all subregions at any time. In the DG, CR+ was gradually decreased until 2 weeks and lowest at 3 and 4 weeks. PV+ in the CA1 region was not altered at 1 week, and gradually decreased from 2 weeks. In the CA3 region, PV+ did not change in any subregions at any time. In the DG, PV+ was not altered at 1 week, decreased at 2 weeks, and lowest at 3 and 4 weeks. In brief, Scop significantly decreased CBPs expressions in the hippocampus ≥3 weeks after the treatment although memory deficits had developed at 1 week. Therefore, it is suggested that Scop (1 mg/kg) must be systemically treated for ≥3 weeks to investigate changes in expression levels of CBPs in the hippocampus.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Escopolamina/farmacologia , Animais , Disfunção Cognitiva/tratamento farmacológico , Imuno-Histoquímica , Masculino , Camundongos , Memória Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA