RESUMO
Natural cyclic dinucleotide (CDN) is the secondary messenger involved in bacterial hemostasis, human innate immunity, and bacterial antiphage immunity. Synthetic CDN and its analogues are key molecular probes and potential immunotherapeutic agents. Several CDN analogues are under clinical research for antitumor immunotherapy. A myriad of synthetic methods have been developed and reported for the preparation of CDN and its analogues. However, most of the protocols require multiple steps, and only one CDN or its analogue is prepared at a time. In this study, a strategy based on a macrocyclic ribose phosphate skeleton containing a 1'-alkynyl group was designed and developed to prepare CDN analogues containing triazolyl C-nucleosides by click chemistry. Combinatorial application of click chemistry and the sulfenylation cascade to the macrocyclic skeleton expanded the diversity of the CDN analogues. This macrocyclic skeleton strategy rapidly and efficiently provides CDN analogues to facilitate research on microbiology, immunology, and immunotherapy.
Assuntos
Nucleosídeos , Triazóis , Nucleosídeos/química , Nucleosídeos/síntese química , Triazóis/química , Triazóis/síntese química , Desenho de Fármacos , Estrutura Molecular , Química Click , Humanos , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/síntese químicaRESUMO
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Assuntos
Potássio , Sódio , Transporte Biológico , Cátions , Potássio/metabolismoRESUMO
An easily prepared fluoro-functionalized ionic covalent organic framework (F-iCOF) has been implemented into MALDI-TOF MS, enabling the highly selective enrichment and sensitive determination of perfluorinated sulfonate (PFS) contaminants in a rapid and convenient manner. The good thermal stability and excellent optical absorption properties of F-iCOF makes it a brilliant matrix with no background noise. Moreover, benefitting from the large surface area, appropriate pore size, good water dispersibility, and abundant fluorine atom and cationic characteristic of F-iCOF, it exhibited superior adsorption capacity and enrichment selectivity towards PFSs. Good signal responses for PFSs were obtained in the presence of various interfering compounds such as BSA, HA, or even more than 100-fold excess of glutamic acid and similar in structure sodium alkyl sulfonates, highlighting the specific selectivity of F-iCOF. Calibration curves for potassium perflurobutane sulfonate (PFBSK) in tap water and whole blood were established with good linear correlation in the range 1-500 pg mL-1. The limits of detection and quantification for PFBSK were as low as 0.04 pg mL-1 and 0.05 pg mL-1, respectively, which are comparable or better than the existing methods for the determination of PFSs.
Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adsorção , Íons , Alcanossulfonatos , Água/químicaRESUMO
The human stimulator of interferon genes protein (hSTING) can bind cyclic dinucleotides (CDNs) to activate the production of typeâ I interferons and inflammatory cytokines. These CDNs can be either bacterial secondary messengers, 3'3'-CDNs, or endogenous 2'3'-cGAMP. cGAMP, with a unique 2'-5' bond, is the most potent activator of hSTING among all CDNs. However, current understanding of the molecular principles underlying the unique ability of 2'3'-cGAMP to potently activate hSTINGs other than 3'3'-CDNs remains incomplete. In this work, molecular dynamics simulations were used to provide an atomistic picture of the binding of 2'3'-cGAMP and one 3'3'-CDN (c-di-GMP) to hSTING. The results suggest that hSTING binds more strongly to 2'3'-cGAMP than to c-di-GMP, which prefers to bind with a more open and flexible state of hSTING. Finally, a potential "dock-lock-anchor" mechanism is proposed for the activation of hSTING upon the binding of a potent ligand. It is believed that deep insights into understanding the binding of hSTING with 3'3'-CDNs and the endogenous 2'3'-cGAMP would help to establish the principles underlying powerful 2'3'-cGAMP signaling and the nature of hSTING activation, as well as related drug design.
Assuntos
GMP Cíclico/análogos & derivados , Nucleotídeos de Guanina/metabolismo , Proteínas de Membrana/metabolismo , Sítios de Ligação , GMP Cíclico/química , GMP Cíclico/metabolismo , Nucleotídeos de Guanina/química , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutação , Análise de Componente Principal , Ligação Proteica , Conformação ProteicaRESUMO
A class of artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+ ), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+ , and generated stable membrane potential across lipid bilayers.
RESUMO
We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5' end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5' terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5-6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed â¼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA.
Assuntos
Benzotiazóis/química , Neoplasias Pulmonares/patologia , Ácidos Nucleicos Peptídicos/química , Proteínas Proto-Oncogênicas/genética , Quinolinas/química , Proteínas ras/genética , Linhagem Celular Tumoral , Humanos , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Proteínas Proto-Oncogênicas p21(ras) , RNA Mensageiro/química , Espectrometria de Fluorescência , Temperatura , TermodinâmicaRESUMO
Bacterial infections originating from food, water, and soil are widely recognized as significant global public health concerns. Biofilms are implicated in approximately two-thirds of bacterial infections. In recent times, nanomaterials have emerged as potential agents for combating biofilms and bacteria, with many of them being activated by light and H2O2 to generate reactive oxygen species (ROS). However, this energy-consuming and extrinsic substrate pattern poses many challenges for practical application. Consequently, there is a pressing need to develop methods for the untriggered generation of ROS to effectively address biofilm and bacterial infections. In this study, we investigated the oxidase-like activity of the Co,N-doped carbon dot (CoNCD) nanozyme, which facilitated the oxidation of ambient O2 to generate 1O2 in the absence of light and H2O2 supplementation; this resulted in effective biofilm cleavage and enhanced bactericidal effects. CoNCDs could become a potential candidate for wound healing and treatment of acute peritonitis in vivo, which can be primarily attributed to the spontaneous production of ROS. This study presents a convenient ROS generator that does not necessitate any specific triggering conditions. The nanozyme properties of CoNCDs exhibit significant promise as a potential remedy for diseases, specifically as an anti-biofilm and anti-bacterial agent.
Assuntos
Infecções Bacterianas , Carbono , Humanos , Carbono/química , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Bactérias , BiofilmesRESUMO
2', 3'-cGAMP (CDN) as cGAS-STING pathway agonist is extensively used in tumor treatment. However, due to its negatively charged nature (containing two phosphate groups) and high hydrophilicity, CDN faces challenges in crossing cell membranes, resulting in reduced efficiency of its use. Additionally, CDN is susceptible to inactivation through phosphodiesterase hydrolysis. Therefore, the development of a new drug delivery system for CDN is necessary to prevent hydrolysis and enhance targeted accumulation in tumors, as well as improve cellular uptake for STING activation. In this study, we have developed peptide-polymer nanofibers (PEG-Q11) that incorporate thymine (T) and arginine (R) residues to facilitate complexation with CDN through the principles of Watson-Crick base pairing with thymine and favorable electrostatic interactions and bidentate hydrogen bonding with arginine side chains. The entrapment efficiency (EE) of PEG-Q11T3R4@CDN was found to be 51% higher than that of PEG-Q11@CDN. Due to its favorable biocompatibility, PEG-Q11T3R4@CDN was employed for immunotherapy in mouse CT26 tumors. In local tumor treatment, the administration of PEG-Q11T3R4@CDN at a low dose and through a single injection exhibited inhibitory effects. Furthermore, the local injection of PEG-Q11T3R4@CDN resulted in systemic therapeutic responses, effectively suppressing tumor metastasis by activating CD8 + T cells to target distant tumors. This research not only underscores the potential of PEG-Q11T3R4@CDN as an efficient therapeutic agent but also highlights its ability to achieve long-lasting systemic therapeutic outcomes following local treatment. Consequently, PEG-Q11T3R4@CDN represents a promising strategy for immunization.
Assuntos
Nanofibras , Neoplasias , Camundongos , Animais , Timina/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia , ArgininaRESUMO
Monoamine oxidases (MAO) catalyze the oxidative deamination of many biogenic amines and are integral proteins found in the mitochondrial outer membrane. Changes in MAO-A levels are associated with depression, trait aggression, and addiction. Here we report the synthesis, characterization, and in vitro evaluation of novel fluorescent peptide-peptide nucleic acid (PNA) chimeras for MAOA mRNA imaging in live neuronal cells. The probes were designed to include MAOA-specific PNA dodecamers, separated by an N-terminal spacer to a µ-opioid receptor targeting peptide (DAMGO), with a spacer and a fluorophore on the C-terminus. The probe was successfully delivered into human SH-SY5Y neuroblastoma cells through µ-opioid receptor-mediated endocytosis. The K(d) by flow cytometry was 11.6 ± 0.8 nM. Uptake studies by fluorescence microscopy showed â¼5-fold higher signal in human SH-SY5Y neuroblastoma cells than in negative control CHO-K1 cells that lack µ-opioid receptors. Moreover, a peptide-mismatch control sequence showed no significant uptake in SH-SY5Y cells. Such mRNA imaging agents with near-infrared fluorophores might enable real time imaging and quantitation of neuronal mRNAs in live animal models.
Assuntos
Corantes Fluorescentes/análise , Imagem Molecular , Monoaminoxidase/genética , Neurônios/metabolismo , Ácidos Nucleicos Peptídicos/análise , Peptídeos/análise , RNA Mensageiro/análise , Animais , Células CHO , Cricetinae , Citometria de Fluxo , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Monoaminoxidase/análise , Neuroblastoma/enzimologia , Neuroblastoma/genética , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R = 0.69, P = 0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s ) = 0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides.
Assuntos
Bactérias/classificação , Bactérias/metabolismo , Água Doce/microbiologia , Água do Mar/microbiologia , Sulfatos/metabolismo , Sulfitos/metabolismo , Bactérias/genética , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Sulfito Redutase (NADPH)/genética , Sulfito Redutase (NADPH)/metabolismo , TaiwanRESUMO
In this study, a cooling assisted solid-phase microextraction technique (CA-SPME) was proposed and used for identifying volatile and semi-volatile compounds in edible oil innovatively coupled to gas chromatography-mass spectrometry. Compared with regular SPME technique, CA-SPME presented significantly higher extraction efficiencies for analytes in edible oil due to its synergistic effect of heating and cooling. After optimization of the extraction conditions including heating temperature, cooling temperature, extraction time, and added amount of edible oil, thirty-eight, thirty-six, twenty-nine, and thirty-three kinds of compounds in peanut oil, olive oil, canola oil, and soybean oil were successfully identified, respectively, using DVB/CAR/PDMS coating with extraction time of 30 min and edible oil amounts of 20 µL. Principal component analysis, partial least squares discriminant analysis, and hierarchical clustering analysis (HCA) were performed to evaluate the potential of proposed method in discriminating edible oils adulteration (peanut oil adulterated with canola oil, peanut oil adulterated with soybean oil, olive oil adulterated with canola oil) subsequently. Results demonstrated that the method was useful in successful discrimination of pure and adulterated edible oils with adulteration percentages ranging from 0.5 to 10%. Furthermore, volatiles contributing to classifications between pure and adulterated edible oils were also illustrated based on variable importance for the projection analysis and distributions of volatiles in HCA heatmaps. The proposed method provided a novel strategy for sensitive detection of edible oil adulteration without any other sample pretreatment.
Assuntos
Microextração em Fase Sólida , Óleo de Soja , Cromatografia Gasosa-Espectrometria de Massas , Azeite de Oliva/análise , Óleos de Plantas/análise , Microextração em Fase Sólida/métodos , Óleo de Soja/análiseRESUMO
We are developing agents for positron emission tomography (PET) imaging of cancer gene mRNA expression and software to fuse mRNA PET images with anatomical computerized tomography (CT) images to enable volumetric (3D) haptic (touch-and-feel) simulation of pancreatic cancer and surrounding organs prior to surgery in a particular patient. We have identified a novel ligand specific for epidermal growth factor receptor (EGFR) to direct PET agent uptake specifically into cancer cells, and created a volumetric haptic surgical simulation of human pancreatic cancer reconstructed from patient CT data. Young's modulus and the Poisson ratio for each tissue will be adjusted to fit the experience of participating surgeons.
Assuntos
Imageamento Tridimensional/métodos , Modelos Biológicos , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos , Interface Usuário-Computador , Simulação por Computador , Desenho de Fármacos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese químicaRESUMO
Due to the strong background interferences in the low-mass region and poor reproducibility of conventional organic matrices, it is of great importance to develop a novel matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to qualitatively and quantitatively analyze small molecules. In this work, water-soluble fullerenol C60(OH)24-26 was selected as a MALDI matrix for the analysis of low-molecular-weight compounds in consideration of optical absorption property, water solubility and stability. Compared with the traditional matrices, fullerenol demonstrated lower background interference and stronger peak intensity. In addition, the hydrophilic fullerenol could avoid the heterogeneous crystallization in sample preparation, increase the reproducibility and sensitivity of MALDI-MS, and ameliorate quantitative analysis of small molecules. With saccharin as model analyte, quantitative analysis was carried out using fullerenol as matrix. The results demonstrated satisfying reproducibility and good tolerance to salt. The limit-of-detection of the quantitative analysis was as low as 4 pmol, and the linear range is 1-100 µg mL-1 with R2 greater than 0.99. The analytical results also showed excellent precision and accuracy, low matrix effect and good recovery rate. Fullerenol as a potential matrix was further validated in the quantification of saccharin sodium in different real food samples, such as nuts and drinks. This work not only confirms the potential of fullerenol for the quantitative analysis in food field, but also provides a new technique for rapid analysis of small molecules.
Assuntos
Análise de Alimentos/métodos , Fulerenos/química , Sacarina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bebidas/análise , Limite de Detecção , Modelos Lineares , Nozes/química , Reprodutibilidade dos TestesRESUMO
Infections are a devastating complication of titanium alloy orthopedic implants. Current therapy includes antibiotic-impregnated bone cement and antibiotic-containing coatings. We hypothesized that daptomycin, a Gram-positive peptide antibiotic, could prevent bacterial colonization on titanium alloy surfaces if covalently bonded via a flexible, hydrophilic spacer. We designed and synthesized a series of daptomycin conjugates for bonding to the surface of 1.0 cm² Ti6Al4V foils through bisphosphonate groups, reaching a maximum yield of 180 pmol/cm². Daptomycin-bonded foils killed 53 ± 5% of a high challenge dose of 3 × 105 cfu Staphylococcus aureus ATCC 29213.
Assuntos
Ligas/química , Antibacterianos/farmacologia , Daptomicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Titânio/química , Antibacterianos/síntese química , Antibacterianos/química , Daptomicina/análogos & derivados , Daptomicina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Propriedades de SuperfícieRESUMO
In this study, facile fabrication of three-dimensional (3D) pompon-like gold/zinc oxide (Au/ZnO) porous microspheres by hydrothermal procedure was investigated. These microspheres were utilized as solid phase microextraction (SPME) coating for determination of volatile fatty acids (VFAs) from foot odor coupling with gas chromatography-mass spectrometry (GC-MS). SEM and TEM characterizations showed that as-prepared material was composed of 1D porous nanowires and presented a uniform coating on stainless-steel wire. The extraction of VFAs including propanoic acid, butyric acid, isobutanoic acid, isovaleric acid, hexanoic acid, and heptylic acid was carried out by headspace model after sampling from human foot using cotton wool strips. Following optimization of extraction parameters including extraction temperature and time and desorption temperature and time, the as-prepared SPME coating presented better extraction efficiency than commercial DVB/CAR/PDMS fiber towards all the VFAs due to its excellent properties. Under the optimized conditions, the method exhibited good linearity (0.5-200â¯ng) with regression coefficients (R2) ranging from 0.9836 to 0.9981 for all the analytes. The limits of detection ranged from 0.017 to 0.098â¯ng. Single fiber repeatability varied from 6.5% to 11.2% and the fiber-to-fiber reproducibility ranged from 8.6% to 12.3%. The proposed method was successfully applied for extraction and determination of VFAs from foot odor after sampling using cotton wool strips.
RESUMO
A class of unimolecular channels formed by pillararene-gramicidin hybrid molecules are presented. The charge status of the peptide domain in these channels has a significant impact on their ion transport and antimicrobial activity. These channels exhibited different membrane-association abilities between microbial cells and mammalian cells. One of the channels displayed a higher antimicrobial activity towards S. aureus (IC50 = 0.55 µM) and negligible hemolytic toxicity, showing potential to serve as a systemic antibiotic.
Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Calixarenos/farmacologia , Gramicidina/farmacologia , Canais Iônicos/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Calixarenos/química , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Gramicidina/química , Canais Iônicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , RatosRESUMO
The need for self-protecting polymer or alloy implants resistant to a broad spectrum of bacterial challenges led us to investigate covalent bonding of minocycline (MIN), a tetracycline derivative, to polystyrene beads and to titanium alloy foils by oligoethylene glycol spacers. 9-Hydrazino-acetyl-amido-MIN, and simpler glycylcycline derivatives, retained minimum inhibitory concentration (MIC) against Staphylococcus aureus comparable to MIN. However, PEG-glycyl-amido-MIN showed very low activity. Hence, we coupled 9-hydrazino-acetyl-amido-MIN to the aldehyde termini of oligoethylene glycol spacers bonded to polystyrene and titanium alloy surfaces to form acid-releasable hydrazone linkages. 9-Hydrazino-acetyl-amido-MIN was released from the monolayers more rapidly at pH 5.0 than at pH 7.4.
Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Minociclina/análogos & derivados , Minociclina/síntese química , Minociclina/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana/métodos , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimentoRESUMO
The genetic structure of the Asian tri-spine horseshoe crab, Tachypleus tridentatus, was investigated in three populations of Taiwan Strait using mitochondrial (mt) AT-rich region DNA sequences. We examined 23 individuals from Kinmen, an island located on the western side of Taiwan Strait, and 12 each from Tiexianwei and Dongwei near Magong Island in the Penghu Archipelago, in the middle of Taiwan Strait. DNA sequence analysis of 369 base pairs (bp) of the mt AT-rich region revealed 10 haplotypes among the 47 individuals, with a mean haplotypic diversity (h) of 0.626+/-0.075 and nucleotide diversity (pi) of 0.0039+/-0.00055. Pairwise F-statistics (F(ST)) revealed significantly high gene flow between Kinmen and Dongwei (F(ST)=-0.0351, p>0.05, N(e)m=infinity), but marked population subdivision and restricted gene flow between Kinmen and Tiexianwei (F(ST)=0.1382, p<0.05, N(e)m=3.1176). Between populations at Magong Island, gene flow was moderate (F(ST)=0.0634, p>0.05, N(e)m=7.3913). Mismatch distribution analysis indicated that the relatively low haplotype and nucleotide diversity observed in the Tiexianwei T. tridentatus population can be attributed to a recent bottleneck, probably due to isolation of Tiexianwei in semi-closed Magong Bay that prevents gene flow from neighboring populations.
Assuntos
Variação Genética , Genética Populacional , Caranguejos Ferradura/genética , Animais , Sequência de Bases , Primers do DNA/genética , DNA Mitocondrial/genética , Fluxo Gênico/genética , Geografia , Caranguejos Ferradura/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA , TaiwanRESUMO
The estuary of the Danshuei River, a hypoxic subtropical estuary, receives a high rate of untreated sewage effluent. The Ecopath with Ecosim software system was used to construct a mass-balanced trophic model for the estuary, and network analysis was used to characterize the structure and matter flow in the food web. The estuary model was comprised of 16 compartments, and the trophic levels varied from 1.0 for primary producers and detritus to 3.0 for carnivorous and piscivorous fishes. The large organic nutrient loading from the upper reaches has resulted in detritivory being more important than herbivory in the food web. The food-chain length of the estuary was relatively short when compared with other tropical/subtropical coastal systems. The shortness of food-chain length in the estuary could be attributed to the low biomass of the top predators. Consequently, the trophic efficiencies declined sharply for higher trophic levels due to low fractions of flows to the top predators and then high fractions to detritus. The low biomass of the top predators in the estuary was likely subject to over-exploitation and/or hypoxic water. Summation of individual rate measurements for primary production and respiration yielded an estimate of -1791 g WW m(-2) year(-1), or -95 g C m(-2) year(-1), suggesting a heterotrophic ecosystem, which implies that more organic matter was consumed than was produced in the estuary.
Assuntos
Ecossistema , Monitoramento Ambiental , Peixes/fisiologia , Cadeia Alimentar , Hipóxia/metabolismo , Rios/química , Poluentes Químicos da Água , Animais , Biomassa , Sedimentos Geológicos/química , Hipóxia/patologia , Modelos Biológicos , Taiwan , Fatores de Tempo , Clima Tropical , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismoRESUMO
Infections are a devastating complication of titanium alloy orthopedic implants. Current therapies include antibiotic-impregnated bone cement and antibiotic-containing coatings. Daptomycin (DAP) (1) is a novel peptide antibiotic that penetrates the cell membranes of Gram-positive bacteria. Few DAP-resistant strains have appeared so far. We hypothesized that when DAP covalently bonded via a flexible, hydrophilic spacer it could prevent bacterial colonization of titanium alloy surfaces. We designed and synthesized a series of DAP conjugates for bonding to the surface of Ti6Al4V foils through tetra(ethylene glycol) spacers via thioether linkages. The stability and antimicrobial activity of the attached conjugates were evaluated using Staphylococcus aureus ATCC 25923. Colonization of the Ti6Al4V foils was inhibited by 72% at 8 h and 54% at 24 h. The strategy described in this report provides a new, more facile way to prepare bactericidal Ti6Al4V implants.