RESUMO
Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epigênese Genética , Hipocampo , Chumbo , Manganês , Transtornos da Memória , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Epigênese Genética/efeitos dos fármacos , Manganês/toxicidade , Chumbo/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína Fosfatase 2/metabolismo , Aprendizagem/efeitos dos fármacosRESUMO
BACKGROUND: Immune checkpoint inhibitors have transformed the treatment landscape of cancer treatment, but only a fraction of patients responds to treatment, leading to an increasing effort to repurpose clinically approved medications to augment ICI therapy. Metformin has been associated with improved survival outcomes in patients undergoing conventional chemotherapy. However, whether metformin provides survival benefits in patients receiving immune checkpoint inhibitors (ICIs) is unknown. METHODS: We performed a retrospective cohort study at two tertiary referral centers in Taiwan. All adult diabetes mellitus patients who were treated with ICIs between January 2015 and December 2021 were included. The primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS), respectively. RESULTS: In total, 878 patients were enrolled in our study, of which 86 patients used metformin and 78 patients used non-metformin diabetes medications. Compared with non-users, metformin users had a longer median OS (15.4 [IQR 5.6-not reached] vs. 6.1 [IQR, 0.8-21.0] months, P = 0.003) and PFS (5.1 [IQR 2.0-14.3] vs. 1.9 [IQR 0.7-8.6] months, P = 0.041). In a univariate Cox proportional hazard analysis, the use of metformin was associated with a reduction in the risk of mortality (HR: 0.53 [95% confidence interval: 0.35-0.81], P = 0.004) and disease progression (HR: 0.69 [95% CI 0.49-0.99], P = 0.042). The use of metformin remained associated with a lower risk of mortality after adjusting for baseline variables such as age, cancer stage, and underlying comorbidities (OS, HR: 0.55 [95% CI 0.34-0.87], P = 0.011). Similarly, the use of metformin was associated with a lower risk of disease progression. Importantly, the use of metformin before ICI initiation was not associated with a reduction in mortality (HR: 0.61 [95% CI 0.27-1.42], P = 0.25) or disease progression (HR: 0.69 [95% CI 0.33-1.43], P = 0.32). CONCLUSION: The use of metformin is associated with survival benefits in patients undergoing immunotherapy. Prospective clinical trials are warranted to define the role of metformin in augmenting immunotherapy.
Assuntos
Metformina , Adulto , Humanos , Metformina/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , Progressão da DoençaRESUMO
This Focus aims at showcasing the significance of manipulating atomic and molecular layers for various applications. To this end, this Focus collects 15 original research papers featuring the applications of atomic layer deposition, chemical vapor deposition, wet chemistry, and some other methods for manipulations of atomic and molecular layers in lithium-ion batteries, supercapacitors, catalysis, field-effect transistors, optoelectronics, and others.
RESUMO
This brief presents an analog front-end (AFE) for the detection of electroencephalogram (EEG) signals. The AFE is composed of four sections, chopper-stabilized amplifiers, ripple suppression circuit, RRAM-based lowpass FIR filter, and 8-bit SAR ADC. This is the first time that an RRAM-based lowpass FIR filter has been introduced in an EEG AFE, where the bio-plausible characteristics of RRAM are utilized to analyze signals in the analog domain with high efficiency. The preamp uses the symmetrical OTA structure, reducing power consumption while meeting gain requirements. The ripple suppression circuit greatly improves noise characteristics and offset voltage. The RRAM-based low-pass filter achieves a 40 Hz cutoff frequency, which is suitable for the analysis of EEG signals. The SAR ADC adopts a segmented capacitor structure, effectively reducing the capacitor switching power consumption. The chip prototype is designed in 40 nm CMOS technology. The overall power consumption is approximately 13 µW, achieving ultra-low-power operation.
Assuntos
Amplificadores Eletrônicos , Eletroencefalografia , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Sinais Assistido por ComputadorRESUMO
We theoretically propose a nonplasmonic optical refractive index sensor based on black phosphorus (BP) and other dielectric materials in the infrared band. Due to the anisotropic property of BP, the proposed sensor can achieve alternative sensitivity and figure of merit (FOM) in its different crystal directions. The high sensitivity and FOM are attributed to the strong magnetic resonance in the all-dielectric configuration. The coupled-mode theory (CMT) is used to verify the simulation results and reveal the physical mechanism. Furthermore, influences of the sample and the incident angle on the performance of the sensor are also discussed. Our design utilizes a simple dielectric structure with a BP monolayer, which exhibits great potential for the future high-performance sensor with low cost.
RESUMO
The pristine and diethylenetriamine (DETA)-doped tungsten disulfide quantum dots (WS2 QDs) with an average lateral size of about 5 nm have been synthesized using pulsed laser ablation (PLA). Introduction of the synthesized WS2 QDs on the InGaAs/AlGaAs quantum wells (QWs) can improve the photoluminescence (PL) of the InGaAs/AlGaAs QW as high as 6 fold. On the basis of the time-resolved PL and Kelvin probe measurements, the PL enhancement is attributed to the carrier transfer from the pristine or DETA-doped WS2 QDs to the InGaAs/AlGaAs QW. A heterostructure band diagram is proposed for explaining the carrier transfer, which increases the hole densities in the QW and enhances its PL intensity. This study is expected to be beneficial for the development of the InGaAs-based optoelectronic devices.
RESUMO
Electrical isolation devices are essential components for safeguarding the reliability of electronic systems under harsh conditions. Digital isolators are widely used in low-power circuits due to their high immunity to disturbances. In this paper, a capacitive digital isolator for high-efficiency power supply scenarios is proposed with a high common-mode transient immunity (CMTI) and high data transmission rate. The on-off keying (OOK) modulation technique is used to ensure a high speed and accurate signal transmission. A fully integrated high-voltage level-shift driver with an ns-scale delay is proposed for increasing the drive capacity. Post-simulation results in Cadence IC 6.1.7 with the standard 0.18 µm CMOS process show that the proposed architecture achieves a 25 Mbps data transmission rate and 15 ns typical propagation delay with output peak currents of 2 A/4 A, respectively. Meanwhile, a CMTI of more than 150 kV/µs is realized.
RESUMO
As the traditional silicon-based CMOS technology advances into the nanoscale stage, approaching its physical limits, the Carbon Nanotube Field-effect Transistor (CNTFET) is considered to be the most significant transistor technology beyond Moore's era. The CNTFET has a quasi-one-dimensional structure so that the carrier can realize ballistic transport and has very high mobility. At the same time, a single CNTFET can integrate hundreds of nanowires as the conductive channels, enabling significant current transport capabilities even in low supply voltage, thereby providing a foundational basis for achieving nanoscale ultra-large-scale analog/logic circuits. This paper summarizes the development status of the CNTFET compact model and digital/analog/RF integrated circuits. The challenges faced by SPICE modeling and circuit design are analyzed. Meanwhile, solutions to these challenges and development trends of carbon-based transistors are discussed. Finally, the future application prospects of carbon-based integrated circuits are presented.
RESUMO
Objective To investigate the molecular mechanism of taurine regulating the polarization of M2 macrophages by mitophagy. Methods THP-1 cells were divided into four groups: M0 group (THP-1 cells were treated by 100 nmol/L phorbol myristate ester for 48 hours to polarize into M0), M2 group (THP-1 cells were induced to polarize into M2 macrophages by 20 ng/mL interferon-4 (IL-4) for 48 hours), M2 combined with taurine groups (added with 40 or 80 mmol/L taurine on the basis of M2 macrophages). The mRNA expression of mannose receptor C type 1(MRC-1), C-C motif chemokine ligand 22(CCL22) and dendritic cell-specific ICAM-3 grabbing non-integrin (CD209) in M2 macrophages were detected by quantitative real-time PCR. Mitochondrial and lysosome probes were used to detect the number of mitochondria and lysosomes by multifunction microplate reader and confocal laser scanning microscope. The level of mitochondrial membrane potential (MMP) was detected by JC-1 MMP assay kit. The expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blot analysis. Results Compared with M0 group, the expression of MRC-1, CCL22, CD209 and PINK1, the number of mitochondria and the level of MMP in M2 group were significantly increased, whereas the number of lysosomes and LC3II/LC3I ratio were decreased. Compared with M2 group, the expressions of MRC-1, CCL22 and CD209, the number of mitochondria and the level of MMP in M2 combined with taurine group dropped significantly while the number of lysosomes was found increased, and the protein expression of PINK1 and LC3II/LC3I ratio were also increased. Conclusions The polarization of M2 macrophages is regulated by taurine to prevent excessive polarization via reducing the level of MMP, improving the level of mitophagy, reducing the number of mitochondria, and inhibiting the mRNA expression of polarization markers in M2 macrophages.
Assuntos
Mitofagia , Taurina , Macrófagos/metabolismo , Proteínas Quinases/metabolismo , RNA MensageiroRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS: The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS: LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS: Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.
RESUMO
Impaired glucose regulation is one of the most important risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which have become a major public health issue worldwide. Dysregulation of carbohydrate metabolism in liver has been shown to play a critical role in the development of glucose intolerance but the molecular mechanism has not yet been fully understood. In this study, we investigated the role of hepatic LCMT1 in the regulation of glucose homeostasis using a liver-specific LCMT1 knockout mouse model. The hepatocyte-specific deletion of LCMT1 significantly upregulated the hepatic glycogen synthesis and glycogen accumulation in liver. We found that the liver-specific knockout of LCMT1 improved high fat diet-induced glucose intolerance and insulin resistance. Consistently, the high fat diet-induced downregulation of glucokinase (GCK) and other important glycogen synthesis genes were reversed in LCMT1 knockout liver. In addition, the expression of GCK was significantly upregulated in MIHA cells treated with siRNA targeting LCMT1 and improved glycogen synthesis. In this study, we provided evidences to support the role of hepatic LCMT1 in the development of glucose intolerance induced by high fat diet and demonstrated that inhibiting LCMT1 could be a novel therapeutic strategy for the treatment of glucose metabolism disorders.
Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Proteína O-Metiltransferase , Camundongos , Animais , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Metiltransferases/metabolismo , Proteína O-Metiltransferase/metabolismoRESUMO
OBJECTIVES: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce heart failure (HF) in at-risk patients and may possess antitumour effects. We examined the effect of SGLT2i on HF and mortality among patients with cancer and diabetes. METHODS: This was a retrospective propensity score-matched cohort study involving adult patients with type 2 diabetes mellitus diagnosed with cancer between January 2010 and December 2021. The primary outcomes were hospitalisation for incident HF and all-cause mortality. The secondary outcomes were serious adverse events associated with SGLT2i. RESULTS: From a total of 8640 patients, 878 SGLT2i recipients were matched to non-recipients. During a median follow-up of 18.8 months, SGLT2i recipients had a threefold lower rate of hospitalisation for incident HF compared with non-SGLT2i recipients (2.92 vs 8.95 per 1000 patient-years, p=0.018). In Cox regression and competing regression models, SGLT2i were associated with a 72% reduction in the risk of hospitalisation for HF (HR 0.28 (95% CI: 0.11 to 0.77), p=0.013; subdistribution HR 0.32 (95% CI: 0.12 to 0.84), p=0.021). The use of SGLT2i was also associated with a higher overall survival (85.3% vs 63.0% at 2 years, p<0.001). The risk of serious adverse events such as hypoglycaemia and sepsis was similar between the two groups. CONCLUSIONS: The use of SGLT2i was associated with a lower rate of incident HF and prolonged overall survival in patients with cancer with diabetes mellitus.
Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Neoplasias , Inibidores do Transportador 2 de Sódio-Glicose , Adulto , Humanos , Estudos de Coortes , Estudos Retrospectivos , Glucose , SódioRESUMO
A combined method of modified oblique-angle deposition and hydrothermal growth was adopted to grow an optically anisotropic nanomaterial based on single crystalline ZnO nanowire arrays (NWAs) with highly oblique angles (75°-85°), exhibiting giant in-plane birefringence and optical polarization degree in emission. The in-plane birefringence of oblique-aligned ZnO NWAs is almost one order of magnitude higher than that of natural quartz. The strong optical anisotropy in emission due to the optical confinement was observed. The oblique-aligned NWAs not only allow important technological applications in passive photonic components but also benefit the development of the optoelectronic devices in polarized light sensing and emission.
Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Óxido de Zinco/química , Anisotropia , Birrefringência , Luz , Teste de Materiais , Espalhamento de Radiação , Propriedades de SuperfícieRESUMO
Electronic structures of well-aligned Er-doped ZnO (ZnO:Er) nanorod arrays (NRAs) synthesized by a solution-based hydrothermal process were characterized by high-resolution transmission electron microscopy (HRTEM) and X-ray absorption fine structure (XAFS). HRTEM and angular dependent X-ray absorption near-edge structure analysis at O K and Zn L3 edges indicates that the spontaneous polarization is along the [0001] direction. The analysis of Er L3-edge XAFS demonstrates that the local structure around Er in the ZnO:Er NRAs was transformed from O(h) to C(4v), after annealing.
RESUMO
The excessive M1 polarization of macrophages drives the occurrence and development of inflammatory diseases. The reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Taurine promotes for the balance of energy metabolism and the repair of inflammatory injury, preventing chronic diseases and complications. However, little is known about the mechanisms underlying the action of taurine modulating the macrophage polarization phenotype. In this study, we constructed a low-dose LPS/IFN-γ-induced M1 polarization model to simulate a low-grade pro-inflammatory process. Our results indicate that the taurine transporter TauT/SlC6A6 is upregulated at the transcriptional level during M1 macrophage polarization. The nutrient uptake signal on the membrane supports the high abundance of taurine in macrophages after taurine supplementation, which weakens the status of methionine metabolism, resulting in insufficient S-adenosylmethionine (SAM). The low availability of SAM is directly sensed by LCMT-1 and PME-1, hindering PP2Ac methylation. PP2Ac methylation was found to be necessary for M1 polarization, including the positive regulation of VDAC1 and PINK1. Furthermore, its activation was found to promote the elimination of mitochondria by macrophages via the mitophagy pathway for metabolic adaptation. Mechanistically, taurine inhibits SAM-dependent PP2Ac methylation to block PINK1-mediated mitophagy flux, thereby maintaining a high mitochondrial density, which ultimately hinders the conversion of energy metabolism to glycolysis required for M1. Our findings reveal a novel mechanism of taurine-coupled M1 macrophage energy metabolism, providing novel insights into the occurrence and prevention of low-grade inflammation, and propose that the sensing of taurine and SAM availability may allow communication to inflammatory response in macrophages.
Assuntos
Glicólise/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/metabolismo , Taurina/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metilação/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Células THP-1 , Taurina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismoRESUMO
In this study, we demonstrate the visible-light-assisted photoelectrochemical (PEC) biosensing of uric acid (UA) by using graphene oxide nanoribbons (GONRs) as PEC electrode materials. Specifically, GONRs with controlled properties were synthesized by the microwave-assisted exfoliation of multi-walled carbon nanotubes. For the detection of UA, GONRs were adopted to modify either a screen-printed carbon electrode (SPCE) or a glassy carbon electrode (GCE). Cyclic voltammetry analyses indicated that all Faradaic currents of UA oxidation on GONRs with different unzipping/exfoliating levels on SPCE increased by more than 20.0% under AM 1.5 irradiation. Among these, the GONRs synthesized under a microwave power of 200 W, namely GONR(200 W), exhibited the highest increase in Faradaic current. Notably, the GONR(200 W)/GCE electrodes revealed a remarkable elevation (~40.0%) of the Faradaic current when irradiated by light-emitting diode (LED) light sources under an intensity of illumination of 80 mW/cm2. Therefore, it is believed that our GONRs hold great potential for developing a novel platform for PEC biosensing.
RESUMO
We demonstrated the Au nanoparticle (NP) decoration as an effective way to enhance both photocurrent and photoconductive gain of single ZnO nanowire (NW) photodetectors (PDs) through localized Schottky effects. The enhancement is caused by the enhanced space charge effect due to the existence of the localized Schottky junctions under open-circuit conditions at the NW surfaces, leading to a more pronounced electron-hole separation effect. Since the band-bending under illumination varies relatively small for an Au NP-decorated ZnO NW, the decay of gain is less prominent with increased excitation power, demonstrating the feasibility for a PD to maintain a high gain under high-power illumination.
RESUMO
Graphene Hall elements (GHEs) have been demonstrated to be promising magnetic field sensors with excellent sensitivity, linearity, temperature stability, and compatibility with complementary-metal-oxide-semiconductor (CMOS)-integrated circuits (ICs). However, the demonstrated GHEs have still not exhibited a comprehensive advantage in performance over commercial integrated Hall sensors which were implemented in integrated Hall element and CMOS processing ICs. In this work, we develop a technology for the three-dimensional (3D) heterogeneous integration of silicon-based CMOS ICs and GHEs, and the fabricated magnetic field sensors outperform commercial high-end integrated Hall sensors. Specifically, the integrated Hall sensors are implemented in a stacked integration on Si based on a chopper programmable-gain amplifier (CPGA), a chopper-stabilized second-order sigma-delta modulator (CSDM), and graphene-based Hall elements on monochips. GHEs with high sensitivity (up to 1000 A/VT) are fabricated with a compatible process on a smoothened silicon nitride passivation layer of silicon-based CMOS ICs, and the two device layers are connected by an interlayer. The heterogeneous integrated Hall ICs exhibit current and voltage magnetic sensitivities up to 64â¯000 A/VT and 6.12 V/VT, respectively, which are much higher than those in all other reported nanomaterial-based Hall sensors and even in high-end commercial Hall ICs. Furthermore, the 3D heterogeneous integration technology used here can be extended as a universal technology for integrating nanomaterial-based sensors and Si CMOS ICs.
RESUMO
In this work, GZO/ZnO/GaN diodes with the light emitting ZnO layer sandwiched between two SiO(2) thin films was fabricated and characterized. We observed a strong excitonic emission at the wavelength 377nm with the Mg(2+) deep level transition and oxygen vacancy induced recombination significantly suppressed. In comparison, light emission from the GZO/GaN device (without SiO(2) barriers) is mainly dominant by defect radiation. Furthermore, the device with confinement layers demonstrated a much higher UV intensity than the blue-green emission of the GZO/GaN p-n device.
Assuntos
Iluminação/instrumentação , Semicondutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Raios UltravioletaRESUMO
We demonstrated that lipid-enclosed CdSe quantum dots (LEQDs) can function as versatile contrast agents in epi-detection third harmonic generation (THG) microscopy for biological applications in vivo. With epi-THG intensities 20 times stronger than corresponding fluorescence intensities from the same LEQDs under the same conditions of energy absorption, such high brightness LEQDs were proved for the abilities of cell tracking and detection of specific molecular expression in live cancer cells. Using nude mice as an animal model, the distribution of LEQD-loaded tumor cells deep in subcutaneous tissues were imaged with high THG contrast. This is the first demonstration that THG contrast can be manipulated in vivo with nanoparticles. By linking LEQDs with anti-Her2 antibodies, the expression of Her2/neu receptors in live breast cancer cells could also be easily detected through THG. Compared with fluorescence modalities, the THG modality also provides the advantage of no photobleaching and photoblinkin g effects. Combined with a high penetration 1230 nm laser, these novel features make LEQDs excellent THG contrast agents for in vivo deep-tissue imaging in the future.