Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575922

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.


Assuntos
Apoptose , Arginina/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Motivos de Aminoácidos , Apoptose/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Metilação , Modelos Moleculares , Mutação , Osteossarcoma/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
2.
Biochem Biophys Res Commun ; 533(3): 467-473, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977949

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by 2019 novel coronavirus (2019-nCoV) has been a crisis of global health, whereas the effective vaccines against 2019-nCoV are still under development. Alternatively, utilization of old drugs or available medicine that can suppress the viral activity or replication may provide an urgent solution to suppress the rapid spread of 2019-nCoV. Andrographolide is a highly abundant natural product of the medicinal plant, Andrographis paniculata, which has been clinically used for inflammatory diseases and anti-viral therapy. We herein demonstrate that both andrographolide and its fluorescent derivative, the nitrobenzoxadiazole-conjugated andrographolide (Andro- NBD), suppressed the main protease (Mpro) activities of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV). Moreover, Andro-NBD was shown to covalently link its fluorescence to these proteases. Further mass spectrometry (MS) analysis suggests that andrographolide formed a covalent bond with the active site Cys145 of either 2019-nCoV Mpro or SARS-CoV Mpro. Consistently, molecular modeling analysis supported the docking of andrographolide within the catalytic pockets of both viral Mpros. Considering that andrographolide is used in clinical practice with acceptable safety and its diverse pharmacological activities that could be beneficial for attenuating COVID-19 symptoms, extensive investigation of andrographolide on the suppression of 2019-nCoV as well as its application in COVID-19 therapy is suggested.


Assuntos
Cisteína Endopeptidases/metabolismo , Diterpenos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Diterpenos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
3.
J Biomed Sci ; 21: 54, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24898546

RESUMO

BACKGROUNDS: A new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated. RESULTS: Circular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference. CONCLUSIONS: Overall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas Virais/química , Proteínas Virais/genética , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/biossíntese , Europa (Continente) , Regulação Viral da Expressão Gênica , Humanos , Íons/química , Metais/química , Processamento de Proteína Pós-Traducional , Proteólise , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas Virais/biossíntese
4.
Food Chem ; 452: 139540, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723570

RESUMO

Angiotensin-converting enzyme (ACE), consisting of N-domain and C-domain, is a key regulator of blood pressure. The use of cACE-specific inhibitors helps minimize side effects in clinical applications. Legumes are a good source of proteins containing ACE inhibitory peptides; however, no studies have reported the identification of cACE-specific inhibitory peptides from Fabaceae. In this study, thermal hydrolysates from seeds, sprouts, pods, seedlings, and flowers of legumes were analyzed. Flowers of legumes exhibited a C-domain-preference ACE inhibition and anti-hypertensive effect in rats. Screening the legume peptide library identified a novel cACE inhibitory peptide, SJ-1. This study reported the first identification of cACE inhibitory peptide from Fabaceae foods. SJ-1, identified from the legume flowers, interacted with active site residues of cACE, leading to the inhibition of ACE activity, downregulation of bradykinin levels, and reduction of blood pressure. These findings also suggested the potential of legume proteins as a source of cACE inhibitory peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Fabaceae , Biblioteca de Peptídeos , Peptídeos , Peptidil Dipeptidase A , Proteínas de Plantas , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fabaceae/química , Animais , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ratos , Proteínas de Plantas/química , Masculino , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Humanos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Ratos Sprague-Dawley
5.
Phytomedicine ; 132: 155860, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38991252

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type that urgently requires effective therapeutic strategies. Andrographolide, a labdane diterpenoid compound abundant in Andrographis paniculata, has anticancer effects against various cancer types, but its anticancer activity and mechanism against PDAC remain largely uncharacterized. PURPOSE: This study explores novel drug target(s) and underlying molecular mechanism of andrographolide against PDAC. STUDY DESIGN AND METHODS: The malignant phenotypes of PDAC cells, PANC-1 and MIA PaCa-2 cells, were measured using MTT, clonogenic assays, and Transwell migration assays. A PDAC xenograft animal model was used to evaluate tumor growth in vivo. Western blot, immunofluorescence and immunohistochemistry were used for measuring protein expression. The TCGA database was analyzed to evaluate promoter methylation status, gene expression, and their relationship with patient survival rates. RT-qPCR was used for detecting mRNA expression. Reporter assays were used for detecting signal transduction pathways. Promoter DNA methylation was determined by sodium bisulfite treatment and methylation-specific PCR (MSP). The biological function and role of specific genes involved in drug effects were measured through gene overexpression. RESULTS: Andrographolide treatment suppressed the proliferation and migration of PDAC cells and impaired tumor growth in vivo. Furthermore, andrographolide induced the mRNA and protein expression of zinc finger protein 382 (ZNF382) in PDAC cells. Overexpression of ZNF382 inhibited malignant phenotypes and cancer-associated signaling pathways (AP-1, NF-κB and ß-catenin) and oncogenes (ZEB-1, STAT-3, STAT-5, and HIF-1α). Overexpression of ZNF382 delayed growth of PANC-1 cells in vivo. ZNF382 mRNA and protein expression was lower in tumor tissues than in adjacent normal tissues of pancreatic cancer patients. Analysis of the TCGA database found the ZNF382 promoter is hypermethylated in primary pancreatic tumors which correlates with its low expression. Furthermore, andrographolide inhibited the expression of DNA methyltransferase 3 beta (DNMT3B) and increased the demethylation of the ZNF382 promoter in PDAC cells. Overexpression of DNMT3B attenuated the andrographolide-suppressed proliferation and migration of PDAC cells. CONCLUSION: Our finding revealed that ZNF382 acts as a tumor suppressor gene in pancreatic cancer and andrographolide restores ZNF382 expression to suppress pancreatic cancer, providing a novel molecular target and a promising therapeutic approach for treating pancreatic cancer.

6.
Antiviral Res ; 158: 199-205, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30138642

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a coronavirus (CoV) discovered in the 1970s that infects the intestinal tract of pigs, resulting in diarrhea and vomiting. It can cause extreme dehydration and death in neonatal piglets. In Asia, modified live attenuated vaccines have been used to control PEDV infection in recent years. However, a new strain of PEDV that belongs to genogroup 2a appeared in the USA in 2013 and then quickly spread to Canada and Mexico as well as Asian and European countries. Due to the less effective protective immunity provided by the vaccines against this new strain, it has caused considerable agricultural and economic loss worldwide. The emergence of this new strain increases the importance of understanding PEDV as well as strategies for inhibiting it. Coronaviral proteases, including main proteases and papain-like proteases, are ideal antiviral targets because of their essential roles in viral maturation. Here we provide a first description of the expression, purification and structural characteristics of recombinant PEDV papain-like protease 2, moreover present our finding that 6-thioguanine, a chemotherapeutic drug, in contrast to its competitive inhibition on SARS- and MERS-CoV papain-like proteases, is a noncompetitive inhibitor of PEDV papain-like protease 2.


Assuntos
Antivirais/farmacologia , Papaína/antagonistas & inibidores , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Tioguanina/farmacologia , Sítios de Ligação/efeitos dos fármacos , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus , Proteases Semelhantes à Papaína de Coronavírus , Cinética , Simulação de Acoplamento Molecular , Papaína/química , Papaína/genética , Papaína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes
7.
Sci Rep ; 6: 31176, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499004

RESUMO

Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We've also identified four historical mutations that are able to produce a "GST-like" S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution.


Assuntos
Cristalinas , Evolução Molecular , Glutationa Transferase , Mutação , Octopodiformes , Animais , Cristalinas/química , Cristalinas/genética , Cristalografia por Raios X , Glutationa Transferase/química , Glutationa Transferase/genética , Octopodiformes/química , Octopodiformes/genética , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA