Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 17: 64, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26772178

RESUMO

BACKGROUND: The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class model using these annotations to classify candidate SVs as likely true or false positives. RESULTS: We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz. CONCLUSIONS: We find that candidate SVs with high scores from multiple technologies have high concordance with PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores are questionable. We distribute a set of 2676 high-confidence deletions and 68 high-confidence insertions with high svclassify scores from these call sets for benchmarking SV callers. We expect these methods to be particularly useful for establishing high-confidence SV calls for benchmark samples that have been characterized by multiple technologies.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Software , Benchmarking , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética
2.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168275

RESUMO

Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that: a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane; and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.

3.
J Vis Exp ; (183)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635466

RESUMO

The study of immune cell recruitment and function in tissues has been a very active field over the last two decades. Neutrophils are among the first immune cells to reach the site of inflammation and to participate in the innate immune response during infection or tissue damage. So far, neutrophil migration has been successfully visualized using various in vitro experimental systems based on uniform stimulation, or confined migration under agarose, or micro-fluidic channels. However, these models do not recapitulate the complex microenvironment that neutrophils encounter in vivo. The development of multiphoton microscopy (MPM)-based techniques, such as intravital subcellular microscopy (ISMic), offer a unique tool to visualize and investigate neutrophil dynamics at subcellular resolutions under physiological conditions. In particular, the ear of a live anesthetized mouse provides an experimental advantage to follow neutrophil interstitial migration in real-time due to its ease of accessibility and lack of surgical exposure. ISMic provides the optical resolution, speed, and depth of acquisition necessary to track both cellular and, more importantly, subcellular processes in 3D over time (4D). Moreover, multi-modal imaging of the interstitial microenvironment (i.e., blood vessels, resident cells, extracellular matrix) can be readily accomplished using a combination of transgenic mice expressing select fluorescent markers, exogenous labeling via fluorescent probes, tissue intrinsic fluorescence, and second/third harmonic generated signals. This protocol describes 1) the preparation of neutrophils for adoptive transfer into the mouse ear, 2) different settings for optimal sub-cellular imaging, 3) strategies to minimize motion artifacts while maintaining a physiological response, 4) examples of membrane remodeling observed in neutrophils using ISMic, and 5) a workflow for the quantitative analysis of membrane remodeling in migrating neutrophils in vivo.


Assuntos
Diagnóstico por Imagem , Neutrófilos , Animais , Movimento Celular , Microscopia Intravital/métodos , Camundongos , Camundongos Transgênicos
4.
Biomaterials ; 274: 120812, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962216

RESUMO

Nanofiber scaffolds can induce osteogenic differentiation and cell morphology alterations of human bone marrow stromal cells (hBMSCs) without introduction of chemical cues. In this study, we investigate the predictive power of day 1 cell morphology, quantified by a machine learning based method, as an indicator of osteogenic differentiation modulated by nanofiber density. Nanofiber scaffolds are fabricated via electrospinning. Microscopy, quantitative image processing and clustering analysis are used to systematically quantify scaffold properties as a function of fiber density. hBMSC osteogenic differentiation potential is evaluated after 14 days using osteogenic marker gene expression and after 50 days using calcium mineralization, showing enhanced osteogenic differentiation with an increase in nanofiber density. Cell morphology measurements at day 1 successfully predict differentiation potential when analyzed with the support vector machine (SVM)/supercell tools previously developed and trained on cells from a different donor. A correlation is observed between differentiation potential and cell morphology, demonstrating sensitivity of the morphology measurement to varying degrees of differentiation potential. To further understand how nanofiber density determines hBMSC morphology, both full 3-D morphology measurements as well as other measurements of the 2-D projected morphology are investigated in this study. To achieve predictive power on hBMSC osteogenic differentiation, at least two morphology metrics need to be considered together for each cell, with the majority of metric pairs including one 3-D morphology metric. Analysis of the local nanofiber structure surrounding each cell reveals a correlation with single-cell morphology and indicates that the osteogenic differentiation phenotype may be predictive at the single-cell level.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Humanos , Osteogênese , Alicerces Teciduais
5.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32854115

RESUMO

The eicosanoid leukotriene B4 (LTB4) relays chemotactic signals to direct neutrophil migration to inflamed sites through its receptor BLT1. However, the mechanisms by which the LTB4-BLT1 axis relays chemotactic signals during intravascular neutrophil response to inflammation remain unclear. Here, we report that LTB4 produced by neutrophils acts as an autocrine/paracrine signal to direct the vascular recruitment, arrest, and extravasation of neutrophils in a sterile inflammation model in the mouse footpad. Using intravital subcellular microscopy, we reveal that LTB4 elicits sustained cell polarization and adhesion responses during neutrophil arrest in vivo. Specifically, LTB4 signaling coordinates the dynamic redistribution of non-muscle myosin IIA and ß2-integrin, which facilitate neutrophil arrest and extravasation. Notably, we also found that neutrophils shed extracellular vesicles in the vascular lumen and that inhibition of extracellular vesicle release blocks LTB4-mediated autocrine/paracrine signaling required for neutrophil arrest and extravasation. Overall, we uncover a novel complementary mechanism by which LTB4 relays extravasation signals in neutrophils during early inflammation response.


Assuntos
Inflamação/genética , Leucotrieno B4/genética , Neutrófilos/metabolismo , Receptores do Leucotrieno B4/genética , Animais , Comunicação Autócrina/genética , Antígenos CD18/genética , Movimento Celular/genética , Fatores Quimiotáticos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Miosina não Muscular Tipo IIA/genética , Comunicação Parácrina/genética
6.
Mol Biol Cell ; 31(11): 1103-1111, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213122

RESUMO

Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)-associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences, and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics, and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.


Assuntos
Queratinas/metabolismo , Mitocôndrias/metabolismo , Pele/metabolismo , Animais , Proteínas do Citoesqueleto , Epiderme , Feminino , Queratina-16/genética , Queratina-16/metabolismo , Queratina-6/genética , Queratina-6/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Queratinas/fisiologia , Ceratodermia Palmar e Plantar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/fisiologia , Mutação , Paquioníquia Congênita
7.
Mol Biol Cell ; 30(3): 324-332, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540520

RESUMO

Lumen establishment and maintenance are fundamental for tubular organs physiological functions. Most of the studies investigating the mechanisms regulating this process have been carried out in cell cultures or in smaller organisms, whereas little has been done in mammalian model systems in vivo. Here we used the salivary glands of live mice to examine the role of the small GTPase Cdc42 in the regulation of the homeostasis of the intercellular canaliculi, a specialized apical domain of the acinar cells, where protein and fluid secretion occur. Depletion of Cdc42 in adult mice induced a significant expansion of the apical canaliculi, whereas depletion at late embryonic stages resulted in a complete inhibition of their postnatal formation. In addition, intravital subcellular microscopy revealed that reduced levels of Cdc42 affected membrane trafficking from and toward the plasma membrane, highlighting a novel role for Cdc42 in membrane remodeling through the negative regulation of selected endocytic pathways.


Assuntos
Membrana Celular/metabolismo , Endocitose , Proteína cdc42 de Ligação ao GTP/metabolismo , Células Acinares/citologia , Células Acinares/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Polaridade Celular , Camundongos , Transporte Proteico , Imagem com Lapso de Tempo
8.
Nat Cell Biol ; 21(8): 933-939, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358965

RESUMO

Actomyosin networks, the cell's major force production machineries, remodel cellular membranes during myriad dynamic processes1,2 by assembling into various architectures with distinct force generation properties3,4. While linear and branched actomyosin architectures are well characterized in cell-culture and cell-free systems3, it is not known how actin and myosin networks form and function to remodel membranes in complex three-dimensional mammalian tissues. Here, we use four-dimensional spinning-disc confocal microscopy with image deconvolution to acquire macromolecular-scale detail of dynamic actomyosin networks in exocrine glands of live mice. We address how actin and myosin organize around large membrane-bound secretory vesicles and generate the forces required to complete exocytosis5-7. We find that actin and non-muscle myosin II (NMII) assemble into previously undescribed polyhedral-like lattices around the vesicle membrane. The NMII lattice comprises bipolar minifilaments8-10 as well as non-canonical three-legged configurations. Using photobleaching and pharmacological perturbations in vivo, we show that actomyosin contractility and actin polymerization together push on the underlying vesicle membrane to overcome the energy barrier and complete exocytosis7. Our imaging approach thus unveils a force-generating actomyosin lattice that regulates secretion in the exocrine organs of live animals.


Assuntos
Actomiosina/metabolismo , Exocitose/fisiologia , Contração Muscular/fisiologia , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/genética , Animais , Membrana Celular/metabolismo , Exocitose/genética , Camundongos Transgênicos , Microscopia Confocal/métodos , Miosinas/genética , Vesículas Secretórias/metabolismo
9.
Oncotarget ; 8(67): 111567-111580, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29340075

RESUMO

During metastasis, tumor cells dynamically change their cytoskeleton to traverse through a variety of non-adherent microenvironments, including the vasculature or lymphatics. Due to the challenges of imaging drift in non-adhered tumor cells, the dynamic cytoskeletal phenotypes are poorly understood. We present a new approach to analyze the dynamic cytoskeletal phenotypes of non-adhered cells that support microtentacles (McTNs), which are cell surface projections implicated in metastatic reattachment. Combining a recently-developed cell tethering method with a novel image analysis framework allowed McTN attribute extraction. Full cell outlines, number of McTNs, and distance of McTN tips from the cell body boundary were calculated by integrating a rotating anisotropic filtering method for identifying thin features with retinal segmentation and active contour algorithms. Tethered cells behave like free-floating cells; however tethering reduces cell drift and improves the accuracy of McTN measurements. Tethering cells does not significantly alter McTN number, but rather allows better visualization of existing McTNs. In drug treatment experiments, stabilizing tubulin with paclitaxel significantly increases McTN length, while destabilizing tubulin with colchicine significantly decreases McTN length. Finally, we quantify McTN dynamics by computing the time delay autocorrelations of 2 composite phenotype metrics (cumulative McTN tip distance, cell perimeter:cell body ratio). Our automated analysis demonstrates that treatment with paclitaxel increases total McTN amount and colchicine reduces total McTN amount, while paclitaxel also reduces McTN dynamics. This analysis method enables rapid quantitative measurement of tumor cell drug responses within non-adherent microenvironments, using the small numbers of tumor cells that would be available from patient samples.

10.
ACS Biomater Sci Eng ; 3(10): 2302-2313, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33445289

RESUMO

Many biomaterial scaffolds have been advanced to provide synthetic cell niches for tissue engineering and drug screening applications; however, current methods for comparing scaffold niches focus on cell functional outcomes or attempt to normalize materials properties between different scaffold formats. We demonstrate a three-dimensional (3D) cellular morphotyping strategy for comparing biomaterial scaffold cell niches between different biomaterial scaffold formats. Primary human bone marrow stromal cells (hBMSCs) were cultured on 8 different biomaterial scaffolds, including fibrous scaffolds, hydrogels, and porous sponges, in 10 treatment groups to compare a variety of biomaterial scaffolds and cell morphologies. A bioinformatics approach was used to determine the 3D cellular morphotype for each treatment group by using 82 shape metrics to analyze approximately 1000 cells. We found that hBMSCs cultured on planar substrates yielded planar cell morphotypes, while those cultured in 3D scaffolds had elongated or equiaxial cellular morphotypes with greater height. Multivariate analysis was effective at distinguishing mean shapes of cells in flat substrates from cells in scaffolds, as was the metric L1-depth (the cell height along its shortest axis after aligning cells with a characteristic ellipsoid). The 3D cellular morphotyping technique enables direct comparison of cellular microenvironments between widely different types of scaffolds and design of scaffolds based on cell structure-function relationships.

11.
Biomaterials ; 104: 104-18, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27449947

RESUMO

Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment.


Assuntos
Tamanho Celular , Microambiente Celular/fisiologia , Aprendizado de Máquina , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microscopia/métodos , Células Cultivadas , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Fenótipo
12.
Proc Natl Acad Sci U S A ; 104(3): 943-8, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17213311

RESUMO

Peptidic mimics of the gut hormone glucagon-like peptide (GLP) 1, exemplified by the recently approved drug exenatide, show promise as therapies for type 2 diabetes. Such "incretin mimetics" regulate glucose appearance in the plasma and can restore glucose-stimulated insulin secretion without excess risk of hypoglycemia. The need for injection, which may limit the use of peptidic GLP-1 receptor (GLP-1R) agonists, has driven largely unsuccessful efforts to find smaller molecules. The failure to identify orally effective agonists has instead promoted the indirect approach of inhibiting the GLP-1-degrading enzyme dipeptidyl peptidase IV. Here we report a nonpeptidic GLP-1R agonist with sufficient activity to evoke effects in whole animals, including antidiabetic efficacy in db/db mice. Two substituted cyclobutanes (S4P and Boc5) were developed after screening a compound library against a cell line stably cotransfected with GLP-1R and a cAMP-responsive reporter. Each bound to GLP-1R and increased intracellular cAMP. Agonist effects were blocked by the GLP-1R antagonist exendin(9-39). Boc5 amplified glucose-stimulated insulin secretion in isolated rat islets. Both i.p. and oral administration of Boc5 dose-dependently inhibited food intake in mice, an effect that could be blocked by pretreatment with exendin(9-39). Daily injections of Boc5 into db/db mice reduced HbA1c to nondiabetic values, an effect not observed in ad libitum-fed or pair-fed diabetic controls. Thus, Boc5 behaved as a full GLP-1 mimetic in vitro and in vivo. The chemical genus represented by Boc5 may prompt the exploration of orally available GLP-1R agonists with potential utility in diabetes and obesity.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Receptores de Glucagon/agonistas , Doença Aguda , Animais , Linhagem Celular , Doença Crônica/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1 , Masculino , Camundongos , Estrutura Molecular , Peptídeos/uso terapêutico , Ratos , Receptores de Glucagon/metabolismo
13.
Diabetes Obes Metab ; 7(4): 307-17, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15955116

RESUMO

The increasing worldwide incidence of diabetes in adults constitutes a global public health burden. It is predicted that by 2025, India, China and the United States will have the largest number of people with diabetes. According to the 2003 estimates of the International Diabetes Federation, the diabetes mellitus prevalence in the USA is 8.0% and approximately 90-95% of diabetic Americans have type 2 diabetes - about 16 million people. Type 2 diabetes is a complex, heterogeneous, polygenic disease characterized mainly by insulin resistance and pancreatic beta-cell dysfunction. Appropriate experimental models are essential tools for understanding the molecular basis, pathogenesis of the vascular and neural lesions, actions of therapeutic agents and genetic or environmental influences that increase the risks of type 2 diabetes. Among the animal models available, those developed in rodents have been studied most thoroughly for reasons such as short generation time, inherited hyperglycaemia and/or obesity in certain strains and economic considerations. In this article, we review the current status of most commonly used rodent diabetic models developed spontaneously, through means of genetic engineering or artificial manipulation. In addition to these models, the Psammomys obesus, rhesus monkeys and many other species are studied intensively and reviewed by Shafrir, Bailey and Flatt and Hansen.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos OLETF , Ratos Endogâmicos SHR , Ratos Endogâmicos , Ratos Sprague-Dawley , Ratos Zucker , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA