Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 194, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831301

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly prevalent and deadly cancer, with limited treatment options for advanced-stage patients. Disulfidptosis is a recently identified mechanism of programmed cell death that occurs in SLC7A11 high-expressing cells due to glucose starvation-induced disintegration of the cellular disulfide skeleton. We aimed to explore the potential of disulfidptosis, as a prognostic and therapeutic marker in HCC. METHODS: We classified HCC patients into two disulfidptosis subtypes (C1 and C2) based on the transcriptional profiles of 31 disulfrgs using a non-negative matrix factorization (NMF) algorithm. Further, five genes (NEIL3, MMP1, STC2, ADH4 and CFHR3) were screened by Cox regression analysis and machine learning algorithm to construct a disulfidptosis scoring system (disulfS). Cell proliferation assay, F-actin staining and PBMC co-culture model were used to validate that disulfidptosis occurs in HCC and correlates with immunotherapy response. RESULTS: Our results suggests that the low disulfidptosis subtype (C2) demonstrated better overall survival (OS) and progression-free survival (PFS) prognosis, along with lower levels of immunosuppressive cell infiltration and activation of the glycine/serine/threonine metabolic pathway. Additionally, the low disulfidptosis group showed better responses to immunotherapy and potential antagonism with sorafenib treatment. As a total survival risk factor, disulfS demonstrated high predictive efficacy in multiple validation cohorts. We demonstrated the presence of disulfidptosis in HCC cells and its possible relevance to immunotherapeutic sensitization. CONCLUSION: The present study indicates that novel biomarkers related to disulfidptosis may serve as useful clinical diagnostic indicators for liver cancer, enabling the prediction of prognosis and identification of potential treatment targets.

2.
Mar Drugs ; 22(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38786594

RESUMO

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Assuntos
Phaeophyceae , Polissacarídeos , Alga Marinha , Alga Marinha/metabolismo , Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Biomassa , Glucanos/metabolismo , Flavobacteriaceae/metabolismo , Kelp/metabolismo
3.
Nano Lett ; 23(18): 8628-8636, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37694968

RESUMO

Magnetic resonance imaging (MRI) is an important tool in the diagnosis of many cancers. However, clinical gadolinium (Gd)-based MRI contrast agents have limitations, such as large doses and potential side effects. To address these issues, we developed a hydrogen-bonded organic framework-based MRI contrast agent (PFC-73-Mn). Due to the hydrogen-bonded interaction of water molecules and the restricted rotation of manganese ions, PFC-73-Mn exhibits high longitudinal relaxation r1 (5.03 mM-1 s-1) under a 3.0 T clinical MRI scanner. A smaller intravenous dose (8 µmol of Mn/kg) of PFC-73-Mn can provide strong contrast and accurate diagnosis in multiple kinds of cancers, including breast tumor and ultrasmall orthotopic glioma. PFC-73-Mn represents a prospective new approach in tumor imaging, especially in early-stage cancer.


Assuntos
Glioma , Manganês , Humanos , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos
4.
Anal Chem ; 95(21): 8267-8276, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191204

RESUMO

Patients with triple-negative breast cancer (TNBC) have dismal prognoses due to the lack of therapeutic targets and susceptibility to lymph node (LN) metastasis. Therefore, it is essential to develop more effective approaches to identify early TNBC tissues and LNs. In this work, a magnetic resonance imaging (MRI) contrast agent (Mn-iCOF) was constructed based on the Mn(II)-chelated ionic covalent organic framework (iCOF). Because of the porous structure and hydrophilicity, the Mn-iCOF has a high longitudinal relaxivity (r1) of 8.02 mM-1 s-1 at 3.0 T. For the tumor-bearing mice, a lower dose (0.02 mmol [Mn]/kg) of Mn-iCOF demonstrated a higher signal-to-noise ratio (SNR) value (1.8) and longer retention time (2 h) compared to a 10-fold dose of commercial Gd-DOTA (0.2 mmol [Gd]/kg). Moreover, the Mn-iCOF can provide continuous and significant MR contrast for the popliteal LNs within 24 h, allowing for accurate evaluation and dissection of LNs. These excellent MRI properties of the Mn-iCOF may open new avenues for designing more biocompatible MRI contrast agents with higher resolutions, particularly in the diagnosis of TNBC.


Assuntos
Estruturas Metalorgânicas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Estruturas Metalorgânicas/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Espectroscopia de Ressonância Magnética
5.
Small ; 19(42): e2302100, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330647

RESUMO

Fabrication of transition-metal catalytic materials is regarded as a promising strategy for developing high-performance sodium-selenium (Na-Se) batteries. However, more systematic explorations are further demanded to find out how their bonding interactions and electronic structures can affect the Na storage process. This study finds that lattice-distorted nickel (Ni) structure can form different bonding structures with Na2 Se4 , providing high activity to catalyze the electrochemical reactions in Na-Se batteries. Using this Ni structure to prepare electrode (Se@NiSe2 /Ni/CTs) can realize rapid charge transfer and high cycle stability of the battery. The electrode exhibits high storage performance of Na+ ; i.e., 345 mAh g⁻1 at 1 C after 400 cycles, and 286.4 mAh g⁻1 at 10 C in rate performance test. Further results reveal the existence of a regulated electronic structure with upshifts of the d-band center in the distorted Ni structure. This regulation changes the interaction between Ni and Na2 Se4 to form a Ni3 -Se tetrahedral bonding structure. This bonding structure can provide higher adsorption energy of Ni to Na2 Se4 to facilitate the redox reaction of Na2 Se4 during the electrochemical process. This study can inspire the design of bonding structure with high performance in conversion-reaction-based batteries.

6.
J Transl Med ; 21(1): 823, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978379

RESUMO

BACKGROUND: Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear. METHODS: We established DOX-induced cardiotoxicity models both in vitro and in vivo. Echocardiography and histological analyses were used to determine the severity of cardiac injury in mice. The myocardial damage markers cTnT, CK-MB, ANP, BNP, and ferroptosis associated indicators Fe2+, MDA, and GPX4 were measured using ELISA, RT-qPCR, and western blot assays. The morphology of mitochondria was investigated with a transmission electron microscope. The levels of mitochondrial membrane potential, mitochondrial ROS, and lipid ROS were detected using JC-1, MitoSOX™, and C11-BODIPY 581/591 probes. RESULTS: Our findings demonstrate that WGX50 protects DOX-induced cardiotoxicity via restraining mitochondrial ROS and ferroptosis. In vivo, WGX50 effectively relieves doxorubicin-induced cardiac dysfunction, cardiac injury, fibrosis, mitochondrial damage, and redox imbalance. In vitro, WGX50 preserves mitochondrial function by reducing the level of mitochondrial membrane potential and increasing mitochondrial ATP production. Furthermore, WGX50 reduces iron accumulation and mitochondrial ROS, increases GPX4 expression, and regulates lipid metabolism to inhibit DOX-induced ferroptosis. CONCLUSION: Taken together, WGX50 protects DOX-induced cardiotoxicity via mitochondrial ROS and the ferroptosis pathway, which provides novel insights for WGX50 as a promising drug candidate for cardioprotection.


Assuntos
Cardiotoxicidade , Ferroptose , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/patologia , Doxorrubicina/efeitos adversos , Mitocôndrias/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose
7.
Cancer Cell Int ; 23(1): 124, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349706

RESUMO

BACKGROUND: Uterine corpus endometrial carcinoma (UCEC) is a gynecological malignant tumor with high incidence and poor prognosis. Although immunotherapy has brought significant survival benefits to advanced UCEC patients, traditional evaluation indicators cannot accurately identify all potential beneficiaries of immunotherapy. Consequently, it is necessary to construct a new scoring system to predict patient prognosis and responsiveness of immunotherapy. METHODS: CIBERSORT combined with weighted gene co-expression network analysis (WGCNA), non-negative matrix factorization (NMF), and random forest algorithms to screen the module associated with CD8+ T cells, and key genes related to prognosis were selected out by univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses to develop the novel immune risk score (NIRS). Kaplan-Meier (K-M) analysis was used to compare the difference of survival between high- and low- NIRS groups. We  also explored the correlations between NIRS, immune infiltration and immunotherapy, and three external validation sets were used to verify the predictive performance of NIRS. Furthermore, clinical subgroup analysis, mutation analysis, differential expression of immune checkpoints, and drug sensitivity analysis were performed to generate individualized treatments for patients with different risk scores. Finally, gene set variation analysis (GSVA) was conducted to explore the biological functions of NIRS, and qRT-PCR was applied to verify the differential expressions of three trait genes at cellular and tissue levels. RESULTS: Among the modules clustered by WGCNA, the magenta module was most positively associated with CD8+ T cells. Three genes (CTSW, CD3D and CD48) were selected to construct NIRS after multiple screening procedures. NIRS was confirmed as an independent prognostic factor of UCEC, and patients with high NIRS had significantly worse prognosis compared to those with low NIRS. The high NIRS group showed lower levels of infiltrated immune cells, gene mutations, and expression of multiple immune checkpoints, indicating reduced sensitivity to immunotherapy. Three module genes were identified as protective factors positively correlated with the level of CD8+ T cells. CONCLUSIONS: In this study, we constructed NIRS as a novel predictive signature of UCEC. NIRS not only differentiates patients with distinct prognoses and immune responsiveness, but also guides their therapeutic regimens.

8.
Biomed Chromatogr ; 37(1): e5512, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36101977

RESUMO

Tryptophan (TRP) and its metabolites exhibit significant biological effects and are strongly associated with age-related disease and mortality. However, reports on quantitatively analyzing these metabolites in older individuals are not available. We used ultra-high-performance liquid chromatography-tandem mass spectrometry to optimize and validate a method for isotope dilution analysis of TRP metabolites in older individuals. The targeted analytes are TRP, serotonin or 5-hydroxytryptamine, kynurenine, kynurenic acid, xanthurenic acid, indole-3-acetic acid, indole-3-propionic acid, and tryptamine. The serum sample was purified using solid-phase extraction and was separated on a Waters HSS T3 column (100 mm × 2.1 mm, 1.8 µm). The analytes were detected in the multiple reaction monitoring mode under positive ionization. TRP was confirmed and measured after being diluted 100 times. This method exhibited satisfactory linearity (r > 0.99). The intrabatch and interbatch accuracies (85.7-114%) and precisions (<15%) were acceptable. The standard-normalized matrix effects ranged from 51.6 to 145%. This method was successfully applied to a cohort of 1021 older Chinese individuals, and this study may enable further understanding of the metabolic phenotypes associated with TRP in other populations.


Assuntos
Espectrometria de Massas em Tandem , Triptofano , Humanos , Triptofano/metabolismo , Espectrometria de Massas em Tandem/métodos , População do Leste Asiático , Cinurenina , Ácido Cinurênico , Cromatografia Líquida de Alta Pressão/métodos , Serotonina
9.
Appl Environ Microbiol ; 88(16): e0103122, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35924943

RESUMO

Branching sucrases, a subfamily of Glycoside Hydrolase family (GH70), display transglycosidase activity using sucrose as donor substrate to catalyze glucosylation reaction in the presence of suitable acceptor substrates. In this study, the (α1→3) branching sucrase GtfZ-CD2 from Apilactobacillus kunkeei DSM 12361 was demonstrated to glucosylate benzenediol compounds (i.e., catechol, resorcinol, and hydroquinone) to form monoglucoside and diglucoside products. The production and yield of catechol glucosylated products were significantly higher than that of resorcinol and hydroquinone, revealing a preference for adjacent aromatic hydroxyl groups in glucosylation. Amino residues around acceptor substrate binding subsite +1 were targeted for semirational mutagenesis, yielding GtfZ-CD2 variants with improved resorcinol and hydroquinone glucosylation. Mutant L1560Y with improved hydroquinone mono-glucosylated product synthesis allowed enzymatic conversion of hydroquinone into α-arbutin. This study thus revealed the high potential of GH70 branching sucrases for glucosylating noncarbohydrate molecules. IMPORTANCE Glycosylation represents one of the most important ways to expand the diversity of natural products and improve their physico-chemical properties. Aromatic polyphenol compounds widely found in plants are reported to exhibit various remarkable biological activities; however, they generally suffer from low solubility and stability, which can be improved by glycosylation. Our present study on the glucosylation of benzenediol compounds by GH70 branching sucrase GtfZ-CD2 and its semirational engineering to improve the glucosylation efficiency provides insight into the mechanism of acceptor substrates binding and its glucosylation selectivity. The results demonstrate the potential of using branching sucrase as an effective enzymatic glucosylation tool.


Assuntos
Hidroquinonas , Sacarase , Catecóis , Lactobacillus , Resorcinóis , Sacarase/química
10.
Cancer Cell Int ; 22(1): 326, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274128

RESUMO

BACKGROUND: Ferroptosis is an iron-dependent mode of cell death that could be induced by erastin and exert antitumor effects. However, the clinical and biological roles of ferroptosis-related gene (FRG) signature and the therapeutic value of erastin in multiple myeloma (MM) remained unknown. METHODS: Clinical and gene expression data of MM subjects were extracted from the Gene Expression Omnibus (GEO) public database. Univariable cox analysis was applied to determine FRGs related to survival and the least absolute shrinkage and selection operator (LASSO) regression analysis was used to develop a prognostic model. Prediction accuracy of the model was estimated by receiver operating characteristic (ROC) curves. Functional pathway enrichments and infiltrating immune status were also analyzed. We conducted in vitro experiments to investigate the combination therapy of erastin and doxorubicin. RESULTS: 17 FRGs were strongly associated with patient survival and 11 genes were identified to construct the prognostic model. ROC curves indicated great predictive sensitivity and specificity of the model in all cohorts. Patients were divided into low- and high-risk groups by median risk score in each cohort and the survival of the low-risk group was significantly superior than that of the high-risk group. We also observed a close relevance between functional pathways and immune infiltration with risk scores. Moreover, we combined erastin and doxorubicin in our in vitro experiments and found synergetic antitumor effects of the two agents, and the underlying mechanism is the overgeneration of intracellular Reactive Oxygen Species (ROS). CONCLUSIONS: We demonstrated the important value of ferroptosis in patient prognosis and as a potential antitumor target for MM.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35580024

RESUMO

A Gram-stain-negative, facultatively anaerobic, oxidase-negative and catalase-positive predatory bacillus, designated strain V1718T, was isolated from Xiaoshi Island, PR China. Strain V1718T was found to be closely related to Lujinxingia sediminis SEH01T, with 89.8 % similarity in the 16S rRNA gene sequence, followed by Bradymonas sediminis FA350T with a similarity of 88.4 %. Strain V1718T had the ability to prey on other bacteria, and selective predation on members of Algoriphagus, Nocardioides and Bacillus occurred with the strain. Growth was observed within the range of 20-45 °C (optimal at 37 °C), pH 6.5-9.0 (optimal at pH 8.0) and 1-10 % NaCl (optimal at 3-4 %, w/v). The predominant cellular fatty acids in strain V1718T were iso-C15 : 0 (53.0 %) and C16 : 0 (19.1 %). The major polar lipids present in the strain were phosphatidylglycerol and phosphatidylethanolamine, and the respiratory quinone was menaquinone MK-7. The complete genome sequence of strain V1718T was 5 847 748 bp with a G+C content of 55.2 mol%. The topology of the phylogenomic tree indicated that strain V1718T forms a separate branch in the same clade with the genus Lujinxingia and the family Bradymonadaceae. The average nucleotide identity and average amino acid identity values were 66.4 and 48.6 %, respectively, with Bradymonas sediminis FA350T (type species of Bradymonas) and 66.8 % and 48.9 % with Lujinxingia litoralis B210T (type species of Lujinxingia). The genes related to biosynthesis pathways of several important chemical compounds could not be found in the genome of strain V1718T, which was predicted to be the intrinsic reason for predation in this group. The physiological, biochemical and phylogenetic properties of strain V1718T suggest that it belongs to a novel family distinct from other culturable bradymonabacteria. The name Microvenator marinus gen. nov., sp. nov. is proposed, with strain V1718T (=KCTC 72082T=MCCC 1H00380T) as type strain; the name Microvenatoraceae fam. nov. is also proposed. Meanwhile, the genus Lujinxingia can also be taxonomic classified as Lujinxingiaceae fam. nov. Thus, two novel families and a novel genus of the order Bradymonadales are proposed in this paper.


Assuntos
Ácidos Graxos , Água do Mar , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
12.
Artigo em Inglês | MEDLINE | ID: mdl-35037845

RESUMO

In this study, two bacterial strains designated F2608T and F1192T, isolated from marine sediment sampled in Weihai, PR China, were characterized using a polyphasic approach. Strains were aerobic, Gram-stain-negative and motile. According to the results of phylogenetic analyses based on their 16S rRNA genes, these two strains should be classified under the genus Psychrobacter and they both show <98.5% sequence similarity to their closest relative, Psychrobacter celer JCM 12601T. Moreover, strain F2608T showed 97.5% sequence similarity to strain F1192T. Strain F2608T grew at 4-37 °C (optimum, 30-33 °C) and at pH 6.0-9.0 (optimum, pH 6.5-7.0) in the presence of 0-12% (w/v) NaCl (optimum, 4.0-5.0%). Strain F1192T grew at 4-37 °C (optimum, 30 °C) and at pH 5.5-9.0 (optimum, pH 7.0-7.5) in the presence of 0.5-12% (w/v) NaCl (optimum, 3.0-4.0%). The genomic DNA G+C contents of strain F2608T and strain F1192T were 47.4 and 44.9 %, respectively. Genomic characteristics including average nucleotide identity and digital DNA-DNA hybridization values clearly separated strain F2608T from strain F1192T. The sole isoprenoid quinone in these two strains was ubiquinone 8 and the major cellular fatty acids (>10.0%) were C18:1 ω9c and C17:1 ω8c. The major polar lipids of these two strains were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Based on the results of polyphasic analysis, the two strains represent two novel species of the genus Psychrobacter, for which the names Psychrobacter halodurans sp. nov. and Psychrobacter coccoides sp. nov. are proposed. The type strains are F2608T (=MCCC 1K05774T=KCTC 82766T) and F1192T (=MCCC 1K05775T=KCTC 82765T), respectively.


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Psychrobacter , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Psychrobacter/classificação , Psychrobacter/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Mar Drugs ; 20(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35621940

RESUMO

Polymannuronic acid (PM) possesses more pharmacological activities than sodium alginate, but there have been few studies on its absorption mechanism, tissue distribution, and pharmacokinetics. Studies of pharmacokinetics and tissue distribution are necessary to elucidate the pharmacological effects of PM. Thus, we used fluorescein isothiocyanate (FITC) to produce fluorescently labeled PM (FITC-PM) and detected the distribution and pharmacokinetics of PM in vivo via tail vein injection. The results demonstrate that the FITC-PM showed high stability in different pH solutions. After the tail vein injection, FITC-PM tended to be distributed in the kidney, followed by the liver and in the heart, spleen, and lungs at lower concentrations. Pharmacokinetic analysis showed that the elimination rate constant of FITC-PM was 0.24, the half-life time was 2.85 h, the peak concentration was 235.17 µg/mL, the area under the curve was 631.48 µg/mL·h, the area under the curve by statistical moment was 1843.15 µg/mL·h2, the mean residence time was 2.92 h, and the clearance rate was 79.18 mL/h. These results indicate that FITC-PM could be used for PM distribution and pharmacokinetic studies, and the studies of pharmacokinetics and tissue distribution provided basic information that can be used to further clarify PM pharmacodynamic mechanisms.


Assuntos
Ácido Algínico , Cauda , Animais , Fluoresceína-5-Isotiocianato , Injeções Intravenosas , Camundongos , Distribuição Tecidual
14.
Mar Drugs ; 20(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35447927

RESUMO

Alginate is the main component of brown algae, which is an important primary production in marine ecosystems and represents a huge marine biomass. The efficient utilization of alginate depends on alginate lyases to catalyze the degradation, and remains to be further explored. In this study, 354 strains were isolated from the gut of adult abalones, which mainly feed on brown algae. Among them, 100 alginate-degrading strains were gained and the majority belonged to the Gammaproteobacteria, followed by the Bacteroidetes and Alphaproteobacteria. A marine bacterium, Agarivorans sp. B2Z047, had the strongest degradation ability of alginate with the largest degradation circle and the highest enzyme activity. The optimal alginate lyase production medium of strain B2Z047 was determined as 1.1% sodium alginate, 0.3% yeast extract, 1% NaCl, and 0.1% MgSO4 in artificial seawater (pH 7.0). Cells of strain B2Z047 were Gram-stain-negative, aerobic, motile by flagella, short rod-shaped, and approximately 0.7-0.9 µm width and 1.2-1.9 µm length. The optimal growth conditions were determined to be at 30 °C, pH 7.0-8.0, and in 3% (w/v) NaCl. A total of 12 potential alginate lyase genes were identified through whole genome sequencing and prediction, which belonged to polysaccharide lyase family 6, 7, 17, and 38 (PL6, PL7, PL17, and PL38, respectively). Furthermore, the degradation products of nine alginate lyases were detected, among which Aly38A was the first alginate lyase belonging to the PL38 family that has been found to degrade alginate. The combination of alginate lyases functioning in the alginate-degrading process was further demonstrated by the growth curve and alginate lyase production of strain B2Z047 cultivated with or without sodium alginate, as well as the content changes of total sugar and reducing sugar and the transcript levels of alginate lyase genes. A simplified model was proposed to explain the alginate utilization process of Agarivorans sp. B2Z047.


Assuntos
Alteromonadaceae , Phaeophyceae , Alginatos/metabolismo , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Ecossistema , Phaeophyceae/metabolismo , Polissacarídeo-Liases/metabolismo , Cloreto de Sódio , Especificidade por Substrato , Açúcares
15.
Arch Microbiol ; 203(9): 5397-5403, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34398306

RESUMO

A bacterial strain, designated M625T, was isolated from the surface of a marine red alga. Phylogenetic trees were reconstructed based on the 16S rRNA gene and RpoB protein sequences, which indicated that the strain belongs to the genus Aquimarina within the family Flavobacteriaceae. Strain M625T showed high sequence similarities to A. aggregata RZW4-3-2 T (95.7%), A. seongsanensis CBA3208T (95.3%) and A. versatilis CBA3207T (95.0%). The AAI and POCP values between strain M625T and A. muelleri DSM 19832 T were 71.8% and 57.9% respectively. The dDDH and ANI values between strain M625T and A. aggregata were 19.5% and 74.6% respectively. The strain was Gram-stain negative, strictly aerobic, non-motile and long rod-shaped, and positive for hydrolysis of starch, cellulose, alginate, DNA and Tween 20. The dominant respiratory quinone was MK-6. The major fatty acids were iso-C15:0, iso-C17:0 3-OH, and iso-C15:1 G, and the polar lipids consisted of phosphatidylethanolamine, one unidentified phospholipid, two unidentified aminolipids, and seven unidentified lipids. Based on the polyphasic comparisons, strain M625T is proposed to represent a novel species within the genus Aquimarina, for which the name Aquimarina algicola sp. nov. (type strain M625T = MCCC 1H00399T = KCTC 72685 T) was proposed.


Assuntos
Flavobacteriaceae , Rodófitas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Rodófitas/genética , Água do Mar , Análise de Sequência de DNA , Vitamina K 2
16.
Arch Microbiol ; 203(5): 2229-2236, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33629140

RESUMO

A novel bright yellow pigmented, Gram-stain-negative, gliding, aerobic and rod-shaped marine bacterium, designated strain S7007T, was isolated from a marine sediment sample taken from Jingzi Wharf, Weihai, China. The bacterium was able to grow at 4-33 °C (optimum 28 °C), at pH 6.5-9.0 (optimum 7.0) and with 2.0-4.0% (w/v) NaCl (optimum 3.0%). According to the phylogenetic analysis based on the 16S rRNA gene sequences, strain S7007T was associated with the genus Tenacibaculum and showed highest similarity to Tenacibaculum adriaticum JCM 14633T (98.0%). The average nucleotide identity (ANI) scores of strain S7007T with T. adriaticum JCM 14633T and T. maritimum NBRC 110778T were 78.3% and 77.1%, respectively and the Genome-to-Genome Distance Calculator (dDDH) scores were 20.5% and 19.9%, respectively. The sole isoprenoid quinone was MK-6 and the major cellular fatty acids (> 10.0%) were iso-C15:0, iso-C15:0 3-OH, iso-C15: 1 G and summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c). The major polar lipids of strain S7007T were phosphatidylethanolamine, phosphatidyldimethylethanolamine, one unidentified lipid and two unidentified aminolipids. The genomic DNA G + C content was 30.9 mol %. The combined phenotypic data and phylogenetic inference that strain S7007T should be classified as a novel species in the genus Tenacibaculum, for which the name Tenacibaculum pelagium sp. nov. is proposed. The type strain is S7007T (= MCCC 1H00428T = KCTC 72941T).


Assuntos
Sedimentos Geológicos/microbiologia , Tenacibaculum/classificação , Tenacibaculum/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfatidiletanolaminas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Tenacibaculum/genética , Vitamina K 2/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-34370661

RESUMO

Two bacterial strains, designated SS33T and Y03T, were isolated from marine sediment and marine red alga collected on the coast of Weihai, PR China. Based on the results of 16S rRNA gene sequence analysis, strain SS33T was found to be closely related to Primorskyibacter marinus PX7T, Pelagivirga dicentrarchi YLY04T, Palleronia marisminoris DSM 26347T and Maribius pontilimi GH1-23T with 94.8, 94.6, 94.5 and 94.5 % sequence similarity; strain Y03T was found to be closest to Flavivirga aquimarina EC2D5T, Flavivirga eckloniae ECD14T and Flavivirga amylovorans JC2681T with 96.4, 96.1 and 96.0 % sequence similarity. Strain SS33T grew at 4-37 °C (optimum, 33 °C), at pH 6.0-9.5 (optimum, pH 7.5-8.0) and in the presence of 0-10 % (w/v) NaCl (optimum, 3.0 %). Chemotaxonomic analysis of strain SS33T showed that the predominant respiratory quinone was ubiquinone-10. The major fatty acids (>10.0 %) included C18 : 1 ω7c and C16 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid, one unidentified glycolipid, one unidentified polar lipid and two unidentified aminolipids. Strain Y03T grew at 15-40 °C (optimum, 28 °C), at pH 6.5-8.0 (optimum, pH 7.0) and in the presence of 0.5-9.0 % (w/v) NaCl (optimum, 2.0%). Chemotaxonomic analysis showed that the predominant respiratory quinone was menaquinone-6. The major fatty acids (>10.0 %) included iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids included phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid and four unidentified polar lipids. Based on the polyphasic data, strain SS33T is considered to represent a novel species of the genus Palleronia, for which the name Palleronia sediminis sp. nov. is proposed, with the type strain SS33T (=KCTC 62986T=MCCC 1H00387T). Strain Y03T is considered to represent a novel species of the genus Flavivirga, for which the name Flavivirga algicola sp. nov. is proposed, with the type strain Y03T (=KCTC 72001T=MCCC 1H00386T).


Assuntos
Flavobacteriaceae , Sedimentos Geológicos/microbiologia , Filogenia , Rhodobacteraceae/classificação , Rodófitas/microbiologia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
18.
Xenobiotica ; 51(12): 1389-1399, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34806938

RESUMO

1. 8-methylene-tert-butylamine-3',5,7-trihydroxy-4'-methoxyflavanone (MTBH), a novel hesperidin derivative, has potential in the prevention of hepatic disease, however, its effects on cytochrome P450 isoforms (CYP450s) remains unexplored. The purpose was to investigate the effects of MTBH on the mRNA, protein levels, and activities of six CYP450s (1A2, 2C11/9, 2D2/6, 3A1/4, 2C13/19, and 2E1) in vitro and in vivo.2. In vitro study, rat and human liver microsomes were adopted to elucidate the inhibitory effect of MTBH on six CYP450s using probe drugs. In vivo study, Sprague-Dawley male rats were treated with MTBH (25, 50, or 100 mg/kg for 28 consecutive days), phenobarbital (80 mg/kg for 12 consecutive days), or 0.5% CMC-Na solution (control group) by intragastric administration, then, the mRNA, protein levels and activities of liver CYP450s were analysed by real-time PCR, western blotting and probe-drug incubation systems, respectively.3. The in vitro study indicated that MTBH inhibits the activities of CYP3A1/4 and CYP2E1 in rat and human liver microsomes. In vivo data showed that MTBH inhibits mRNA, protein levels, and activities of CYP3A1 and CYP2E1 in medium- and high-dose MTBH groups.4. MTBH has the potential to cause drug-drug interactions when co-administered with drugs that are metabolised by CYP3A1/4 and CYP2E1.


Assuntos
Hesperidina , Animais , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450 , Hesperidina/farmacologia , Fígado , Masculino , Microssomos Hepáticos , Isoformas de Proteínas , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
19.
Biotechnol Lett ; 43(8): 1575-1583, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33969451

RESUMO

OBJECTIVE: Cyanovirin-N (CVN) is a cyanobacterial protein with potent neutralizing activity against enveloped virus. To achieve the economic and functional production of CVN, the CVN N-terminally fused with CL7(A mutant of the Colicin E7 Dnase) was utilized to improve the solubility and stability of CVN fusion protein (CL7-CVN). Additionally, to improve the detection limit of existing PRV diagnostic assays, CL7-CVN was used for Pseudorabies virus (PRV) enrichment from larger sample volumes. RESULTS: CVN fused with CL7 was efficiently expressed at a level of ~ 40% of the total soluble protein in E. coli by optimizing the induction conditions. Also, the stability of CVN fusion protein was enhanced, and 10 mg of CVN with a purity of ~ 99% were obtained from 1 g of cells by one-step affinity purification with the digestion of HRV 3C protease. Moreover, both purified CVN and CL7-CVN could effectively inhibit the infection of PRV to PK15 cells. Considering the bioactivity of CL7-CVN, we explored a strategy for PRV enrichment from larger samples. CONCLUSIONS: CL7 effectively promoted the soluble expression of CVN fusion protein and improved its stability, which was meaningful for its purification and application. The design of CVN fusion protein provides an efficient approach for the economical and functional production of CVN and a new strategy for PRV enrichment.


Assuntos
Antivirais , Proteínas de Bactérias , Herpesvirus Suídeo 1 , Proteínas Recombinantes de Fusão , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Linhagem Celular , Colicinas/química , Colicinas/genética , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Suínos
20.
Mar Drugs ; 19(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809116

RESUMO

With the widespread occurrence of aquaculture diseases and the broad application of antibiotics, drug-resistant pathogens have increasingly affected aquatic animals' health. Marine probiotics, which live under high pressure in a saltwater environment, show high potential as a substitute for antibiotics in the field of aquatic disease control. In this study, twenty strains of non-hemolytic bacteria were isolated from the intestine of wild oysters and perch, and a model of Caenorhabditis elegans infected by Vibrio anguillarum was established. Based on the model, ML1206, which showed a 99% similarity of 16S rRNA sequence to Planococcus maritimus, was selected as a potential marine probiotic, with strong antibacterial capabilities and great acid and bile salt tolerance, to protect Caenorhabditis elegans from being damaged by Vibrio anguillarum. Combined with plate counting and transmission electron microscopy, it was found that strain ML1206 could significantly inhibit Vibrio anguillarum colonization in the intestinal tract of Caenorhabditis elegans. Acute oral toxicity tests in mice showed that ML1206 was safe and non-toxic. The real-time qPCR results showed a higher expression level of genes related to the antibacterial peptide (ilys-3) and detoxification (ugt-22, cyp-35A3, and cyp-14A3) in the group of Caenorhabditis elegans protected by ML1206 compared to the control group. It is speculated that ML1206, as a potential probiotic, may inhibit the infection caused by Vibrio anguillarum through stimulating Caenorhabditis elegans to secrete antibacterial effectors and detoxification proteins. This paper provides a new direction for screening marine probiotics and an experimental basis to support the potential application of ML1206 as a marine probiotic in aquaculture.


Assuntos
Caenorhabditis elegans/microbiologia , Planococáceas , Probióticos/administração & dosagem , Vibrioses/prevenção & controle , Animais , Aquicultura , Feminino , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ostreidae/microbiologia , Planococáceas/genética , Planococáceas/isolamento & purificação , Probióticos/toxicidade , RNA Ribossômico 16S , Sobrevida , Vibrio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA