Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(7): 3764-3773, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29390077

RESUMO

Cwc23 is a member of the J protein family, and has been shown to interact with Ntr1, a scaffold protein that interacts with Ntr2 and Prp43 to form the NTR complex that mediates spliceosome disassembly. We show that Cwc23 is also an intrinsic component of the NTR complex, and that it interacts with the carboxyl terminus of Ntr1. Metabolic depletion of Cwc23 concurrently depleted Ntr1 and Ntr2, suggesting a role for Cwc23 in stabilizing these two proteins. Ntr1, Ntr2 and Cwc23 are stoichiometrically balanced, and form a stable heterotrimer. Depletion of Cwc23 from splicing extracts using antibodies resulted in depletion of all three proteins and accumulation of intron-lariat in the splicing reaction. Cwc23 is not required for disassembly of intron-lariat spliceosome (ILS), but facilitates disassembly of spliceosome intermediates after the actions of Prp2 and Prp16 by stabilizing the association of Ntr1 with the spliceosome. Cwc23 has a more limited effect on the association of Ntr1 with the ILS. Our data suggest that Cwc23 is important for maintaining the levels of Ntr1 and Ntr2, and that it also plays a regulatory role in targeting spliceosome intermediates for disassembly.


Assuntos
Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética , Adenosina Trifosfatases/genética , RNA Helicases DEAD-box/genética , Íntrons/genética , Chaperonas Moleculares/antagonistas & inibidores , Ligação Proteica , RNA Helicases/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores
2.
RNA ; 23(4): 546-556, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057857

RESUMO

Splicing of precursor mRNA occurs via two consecutive steps of transesterification reaction; both require ATP and several proteins. Despite the energy requirement in the catalytic phase, incubation of the purified spliceosome under proper ionic conditions can elicit competitive reversible transesterification, debranching, and spliced-exon-reopening reactions without the necessity for ATP or other factors, suggesting that small changes in the conformational state of the spliceosome can lead to disparate chemical consequences for the substrate. We show here that Cwc25 plays a central role in modulating the conformational state of the catalytic spliceosome during normal splicing reactions. Cwc25 binds tightly to the spliceosome after the reaction and is then removed from the spliceosome, which normally requires DExD/H-box protein Prp16 and ATP hydrolysis, to allow the occurrence of the second reaction. When deprived of Cwc25, the purified first-step spliceosome catalyzes both forward and reverse splicing reactions under normal splicing conditions without requiring energy. Both reactions are inhibited when Cwc25 is added back, presumably due to the stabilization of first-step conformation. Prp16 is dispensable for the second reaction when splicing is carried out under conditions that destabilize Cwc25. We also show that the purified precatalytic spliceosome can catalyze two steps of the reaction at a low efficiency without requiring Cwc25, Slu7, or Prp18 when incubated under proper conditions. Our study reveals conformational modulation of the spliceosome by Cwc25 and Prp16 in stabilization and destabilization of first-step conformation, respectively, to facilitate the splicing process.


Assuntos
Adenosina Trifosfatases/genética , Regulação Fúngica da Expressão Gênica , RNA Helicases/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Hidrólise , Modelos Biológicos , Conformação Proteica , RNA Helicases/metabolismo , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos , Termodinâmica
3.
Nucleic Acids Res ; 42(19): 12261-71, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294830

RESUMO

The Prp19-associated complex is required for spliceosome activation by stabilizing the binding of U5 and U6 on the spliceosome after the release of U4. The complex comprises at least eight proteins, among which Ntc90 and Ntc77 contain multiple tetratricopeptide repeat (TPR) elements. We have previously shown that Ntc90 is not involved in spliceosome activation, but is required for the recruitment of essential first-step factor Yju2 to the spliceosome. We demonstrate here that Ntc77 has dual functions in both spliceosome activation and the first catalytic step in recruiting Yju2. We have identified an amino-terminal region of Ntc77, which encompasses the N-terminal domain and the first three TPR motifs, dispensable for spliceosome activation but required for stable interaction of Yju2 with the spliceosome. Deletion of this region had no severe effect on the integrity of the NTC, binding of NTC to the spliceosome or spliceosome activation, but impaired splicing and exhibited a dominant-negative growth phenotype. Our data reveal functional roles of Ntc77 in both spliceosome activation and the first catalytic step, and distinct structural domains of Ntc77 required for these two steps.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/metabolismo , Biocatálise , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Fatores de Processamento de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
4.
RNA ; 15(9): 1729-39, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19617314

RESUMO

The Prp19-associated complex (NineTeen Complex [NTC]) is required for spliceosome activation by specifying interactions of U5 and U6 with pre-mRNA on the spliceosome after the release of U4. The NTC consists of at least eight protein components, including two tetratricopeptide repeat (TPR)-containing proteins, Ntc90 and Ntc77. Ntc90 has nine copies of the TPR with seven clustered in the carboxy-terminal half of the protein, and interacts with all identified NTC components except for Prp19 and Ntc25. It forms a stable complex with Ntc31, Ntc30, and Ntc20 in the absence of Ntc25, when other interactions between NTC components are disrupted. In this study, we used both biochemical and genetic methods to analyze the structure of Ntc90, and its function in maintaining the integrity of the NTC and in NTC-mediated spliceosome activation. Our results show that Ntc90 interacts with Ntc31, Ntc30, and other NTC components through different regions of the protein, and that its function may be regulated by Ntc31 and Ntc30. Ntc90 is not required for the association of Prp19, Ntc85, Ntc77, Ntc25, and Ntc20, or for their binding to the spliceosome. It is also not required for NTC-mediated spliceosome activation, but is required for the recruitment of Yju2, which is involved in the first catalytic reaction after the function of Prp2. Our results demonstrate a novel role of the NTC in recruiting splicing factors to the spliceosome after its activation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Spliceossomos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/fisiologia , Deleção de Genes , Modelos Biológicos , Proteínas Nucleares/genética , Organismos Geneticamente Modificados , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética , Spliceossomos/fisiologia
5.
Mol Cell Biol ; 27(15): 5403-13, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17515604

RESUMO

The Prp19-associated complex (NTC) is essential for pre-mRNA splicing and is associated with the spliceosome during spliceosome activation. NTC is required for specifying interactions of U5 and U6 with pre-mRNA to stabilize their association with the spliceosome after dissociation of U4. Here, we show that a novel splicing factor, Yju2, is associated with components of NTC, and that it is required for pre-mRNA splicing both in vivo and in vitro. During spliceosome assembly, Yju2 is associated with the spliceosome at nearly the same time as NTC but is destabilized after the first catalytic reaction, whereas other NTC components remain associated until the reaction is complete. Extracts depleted of Yju2 could be complemented by recombinant Yju2, suggesting that Yju2 and NTC are not entirely in association with each other. Yju2 is not required for the binding of NTC to the spliceosome or for NTC-mediated spliceosome activation. Complementation analysis of the affinity-isolated spliceosome formed in Yju2-depleted extracts demonstrated that Yju2 acts in concert with an unidentified heat-resistant factor(s) in an ATP-independent manner to promote the first catalytic reaction of pre-mRNA splicing after Prp2-mediated structural rearrangement of the spliceosome.


Assuntos
Complexos Multiproteicos/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Catálise/efeitos dos fármacos , RNA Helicases DEAD-box , Teste de Complementação Genética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares , Ligação Proteica/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo
6.
Mol Cell Biol ; 33(3): 514-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23166295

RESUMO

The DEAH-box ATPase Prp43 is required for disassembly of the spliceosome after the completion of splicing or after the discard of the spliceosome due to a splicing defect. Prp43 associates with Ntr1 and Ntr2 to form the NTR complex and is recruited to the spliceosome via the interaction of Ntr2 and U5 component Brr2. Ntr2 alone can bind to U5 and to the spliceosome. To understand how NTR might mediate the disassembly of spliceosome intermediates, we arrested the spliceosome at various stages of the assembly pathway and assessed its susceptibility to disassembly. We found that NTR could catalyze the disassembly of affinity-purified spliceosomes arrested specifically after the ATP-dependent action of DEAH-box ATPase Prp2, Prp16, or Prp22 but not at steps before the action of these ATPases or upon their binding to the spliceosome. These results link spliceosome disassembly to the functioning of splicing ATPases. Analysis of the binding of Ntr2 to each splicing complex has revealed that the presence of Prp16 and Slu7, which also interact with Brr2, has a negative impact on Ntr2 binding. Our study provides insights into the mechanism by which NTR can be recruited to the spliceosome to mediate the disassembly of spliceosome intermediates when the spliceosome pathway is retarded, while disassembly is prevented in normal reactions.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Ligação Proteica , Fatores de Processamento de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo
7.
Biosci Rep ; 32(4): 345-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22762203

RESUMO

RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.


Assuntos
Splicing de RNA , RNA Mensageiro/metabolismo , Spliceossomos/fisiologia , Animais , Sequência de Bases , RNA Helicases DEAD-box/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Spliceossomos/metabolismo
8.
Mol Cell Biol ; 27(23): 8027-37, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17893323

RESUMO

The Saccharomyces cerevisiae splicing factors Ntr1 (also known as Spp382) and Ntr2 form a stable complex and can further associate with DExD/H-box RNA helicase Prp43 to form a functional complex, termed the NTR complex, which catalyzes spliceosome disassembly. We show that Prp43 interacts with Ntr1-Ntr2 in a dynamic manner. The Ntr1-Ntr2 complex can also bind to the spliceosome first, before recruiting Prp43 to catalyze disassembly. Binding of Ntr1-Ntr2 or Prp43 does not require ATP, but disassembly of the spliceosome requires hydrolysis of ATP. The NTR complex also dynamically interacts with U5 snRNP. Ntr2 interacts with U5 component Brr2 and is essential for both interactions of NTR with U5 and with the spliceosome. Ntr2 alone can also bind to U5 and to the spliceosome, suggesting a role of Ntr2 in mediating the binding of NTR to the spliceosome through its interaction with U5. Our results demonstrate that dynamic interactions of NTR with U5, through the interaction of Ntr2 with Brr2, and interactions of Ntr1 and Prp43 govern the recruitment of Prp43 to the spliceosome to mediate spliceosome disassembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/farmacologia , Anticorpos Antifúngicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA