Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Plants (Basel) ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498476

RESUMO

Flower development, as the basis for plant seed development, is principally conserved in angiosperms. At present, a number of genes regulating flower organ differentiation have been identified, and an ABCDE model has also been proposed. In contrast, the mechanism that regulates the development of the sterile lemma remains unclear. In this study, we identified and characterized a rice floral organ mutant, M15, in which the sterile lemma transformed into a lemma-like organ. Positional cloning combined with a complementary experiment demonstrated that the mutant phenotype was restored by LONG STERILE LEMMA1/(G1). G1 was expressed constitutively in various tissues, with the highest expression levels detected in the sterile lemma and young panicle. G1 is a nucleus-localized protein and functions as a homomer. Biochemical assays showed that G1 physically interacted with OsMADS1 both in vitro and in vivo. Interestingly, the expression of G1 in M15 decreased, while the expression level of OsMADS1 increased compared with the wild type. We demonstrate that G1 plays a key role in sterile lemma development through cooperating with OsMADS1. The above results have implications for further research on the molecular mechanisms underlying flower development and may have potential applications in crop improvement strategies.

3.
Front Microbiol ; 15: 1442163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104583

RESUMO

Given the intimate relationship between humans and dogs, the H3N2 canine influenza viruses (CIVs) pose a threat to public health. In our study, we isolated four H3N2 CIVs from 3,758 dog nasal swabs in China between 2018 and 2020, followed by genetic and biological analysis. Phylogenetic analysis revealed 15 genotypes among all available H3N2 CIVs, with genotype 15 prevailing among dogs since around 2017, indicating the establishment of a stable virus lineage in dogs. Molecular characterization identified many mammalian adaptive substitutions, including HA-G146S, HA-N188D, PB2-I292T, PB2-G590S, PB2-S714I, PB1-D154G, and NP-R293K, present across the four isolates. Notably, analysis of HA sequences uncovered a newly emerged adaptive mutation, HA-V223I, which is predominantly found in human and swine H3N2 viruses, suggesting its role in mammalian adaptation. Receptor-binding analysis revealed that the four H3N2 viruses bind both avian and human-type receptors. However, HA-V223I decreases the H3N2 virus's affinity for human-type receptors but enhances its thermal stability. Furthermore, attachment analysis confirmed the H3N2 virus binding to human tracheal tissues, albeit with reduced affinity when the virus carries HA-V223I. Antigenic analysis indicated that the current human H3N2 vaccines do not confer protection against H3N2 CIVs. Collectively, these findings underscore that the potential threat posed by H3N2 CIVs to human health still exists, emphasizing the necessity of close surveillance and monitoring of H3N2 CIVs in dogs.

4.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793585

RESUMO

Influenza A virus (IAV) continues to pose serious threats to the global animal industry and public health security. Identification of critical host factors engaged in the life cycle of IAV and elucidation of the underlying mechanisms of their action are particularly important for the discovery of potential new targets for the development of anti-influenza drugs. Herein, we identified Hydroxyacyl-CoA Dehydratase 3 (HACD3) as a new host factor that supports the replication of IAV. Downregulating the expression of HACD3 reduced the level of viral PB1 protein in IAV-infected cells and in cells that were transiently transfected to express PB1. Silencing HACD3 expression had no effect on the level of PB1 mRNA but could promote the lysosome-mediated autophagic degradation of PB1 protein. Further investigation revealed that HACD3 interacted with PB1 and selective autophagic receptor SQSTM1/p62, and HACD3 competed with SQSTM1/p62 for the interaction with PB1, which prevented PB1 from SQSTM1/p62-mediated autophagic degradation. Collectively, these findings establish that HACD3 plays a positive regulatory role in IAV replication by stabilizing the viral PB1 protein.


Assuntos
Autofagia , Vírus da Influenza A , Influenza Humana , Proteínas Virais , Replicação Viral , Animais , Cães , Humanos , Células A549 , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Proteólise , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
5.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832658

RESUMO

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Assuntos
Leite , Pasteurização , Animais , Pasteurização/métodos , Leite/virologia , Bovinos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Humanos , Influenza Aviária/virologia , Influenza Aviária/transmissão , Influenza Aviária/prevenção & controle , Influenza Aviária/epidemiologia , Inativação de Vírus , Estados Unidos , Influenza Humana/virologia , Influenza Humana/transmissão , Influenza Humana/prevenção & controle , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Feminino
6.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629574

RESUMO

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Assuntos
Galinhas , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Vacinação , Animais , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Galinhas/virologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/virologia , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Camundongos , Humanos , China , Evolução Molecular , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Influenza Humana/imunologia , Camundongos Endogâmicos BALB C , Virulência , Filogenia , Feminino , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/prevenção & controle , Aves Domésticas/virologia
7.
NPJ Vaccines ; 9(1): 152, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160189

RESUMO

The global spread of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses threatens poultry and public health. The continuous circulation of these viruses has led to their considerable genetic and antigenic evolution, resulting in the formation of eight subclades (2.3.4.4a-h). Here, we examined the antigenic sites that determine the antigenic differences between two H5 vaccine strains, H5-Re8 (clade 2.3.4.4g) and H5-Re11 (clade 2.3.4.4h). Epitope mapping data revealed that all eight identified antigenic sites were located within two classical antigenic regions, with five sites in region A (positions 115, 120, 124, 126, and 140) and three in region B (positions 151, 156, and 185). Through antigenic cartography analysis of mutants with varying numbers of substitutions, we confirmed that a combination of mutations in these eight sites reverses the antigenicity of H5-Re11 to that of H5-Re8, and vice versa. More importantly, our analyses identified H5-Re11_Q115L/R120S/A156T (H5-Re11 + 3) as a promising candidate for a broad-spectrum vaccine, positioned centrally in the antigenic map, and offering potential universal protection against all variants within the clade 2.3.4.4. H5-Re11 + 3 serum has better cross-reactivity than sera generated with other 2.3.4.4 vaccines, and H5-Re11 + 3 vaccine provided 100% protection of chickens against antigenically drifted H5 viruses from various 2.3.4.4 antigenic groups. Our findings suggest that antigenic regions A and B are immunodominant in H5 viruses, and that antigenic cartography-guided vaccine design is a promising strategy for selecting a broad-spectrum vaccine.

8.
Nat Microbiol ; 9(7): 1764-1777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849624

RESUMO

Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.


Assuntos
Endocitose , Camundongos Knockout , Receptores de Glutamato Metabotrópico , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Camundongos , Humanos , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Clatrina/metabolismo , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/metabolismo , Células HEK293 , Actinas/metabolismo , Cães , Células Madin Darby de Rim Canino , Receptores Virais/metabolismo , Receptores Virais/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , Orthomyxoviridae/fisiologia , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA