Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(17): e2307283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38109154

RESUMO

Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1, 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.

2.
Langmuir ; 40(31): 16511-16520, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39072506

RESUMO

An intelligent delivery nanoformulation could enhance the utilization efficacy, uptake, and translocation of pesticides in plants. Herein, a redox/pH-triggered and fluorescent smart delivery nanoformulation was designed and constructed by using hollow mesoporous organosilica nanoparticles (HMONs) and ZnO quantum dots as the nanocarrier and capping agent, respectively. Boscalid was further loaded to generate Boscalid@HMONs@ZnO with a loading rate of 9.8% for controlling Botrytis cinerea (B. cinerea). The quantity of boscalid released by Boscalid@HMONs@ZnO in a glutathione environment or at pH 3.0 was 1.3-fold and 1.9-fold higher than that in a neutral condition. Boscalid@HMONs@ZnO has 1.7-fold the toxicity index of boscalid technical against B. cinerea in antifungal experiments. Pot experiments revealed that the efficacy of Boscalid@HMONs@ZnO was significantly enhanced more than 1.27-fold compared to commercially available water-dispersible granules of boscalid. Due to the fluorescence properties of Boscalid@HMONs@ZnO, pesticide transport's real-time monitoring of pesticide translocation in tomato plants could be observed by confocal laser scanning microscopy. Fluorescence images revealed that HMONs@ZnO had been effectively transported via treated leaves or roots in tomato plants. This research showed the successful application of HMONs@ZnO as a nanocarrier for controlling disease and offered an effective avenue to explore the real-time tracking of pesticide translocation in plants.


Assuntos
Botrytis , Nanopartículas , Oxirredução , Óxido de Zinco , Botrytis/efeitos dos fármacos , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Concentração de Íons de Hidrogênio , Corantes Fluorescentes/química , Compostos de Bifenilo/química , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Solanum lycopersicum/química , Praguicidas/química , Praguicidas/toxicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Liberação Controlada de Fármacos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Niacinamida/análogos & derivados
3.
Heliyon ; 10(9): e30505, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726194

RESUMO

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

4.
Nat Cell Biol ; 26(8): 1346-1358, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039181

RESUMO

Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8+CD44+CD62L+ central memory T cells into CD8+CD44-CD62L- T cells, designated as inter-organ migratory T cells (TIM cells). TIM cells move from the BM to the intestine by upregulating integrin ß7 and downregulating C-X-C motif chemokine receptor 3 during leukaemogenesis. Upon immunogenic chemotherapy, these BM-derived TIM cells return from the intestine to the BM through integrin α4-vascular cell adhesion molecule 1 interaction. Blocking C-X-C motif chemokine receptor 3 function boosts the immune response against leukaemia by enhancing T cell trafficking. This phenomenon can also be observed in patients with leukaemia. In summary, we identify an unrecognized intestine-BM trafficking circuit of T cells that contributes to the antitumour effects of immunogenic chemotherapy.


Assuntos
Linfócitos T CD8-Positivos , Movimento Celular , Camundongos Endogâmicos C57BL , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Receptores CXCR3/metabolismo , Cadeias beta de Integrinas/metabolismo , Medula Óssea/imunologia , Medula Óssea/patologia , Medula Óssea/metabolismo , Intestinos/imunologia , Intestinos/patologia , Camundongos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Linhagem Celular Tumoral , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA