RESUMO
Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.
Assuntos
Adenocarcinoma de Pulmão , Diferenciação Celular , Células Epiteliais , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Aneuploidia , Carcinógenos/toxicidade , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Organoides/efeitos dos fármacos , Organoides/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Taxa de Sobrevida , Produtos do Tabaco/efeitos adversos , Produtos do Tabaco/toxicidadeRESUMO
The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.
Assuntos
Células-Tronco Mesenquimais , Miofibroblastos , Animais , Pulmão , Mesoderma/metabolismo , Camundongos , Alvéolos PulmonaresRESUMO
Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infection an urgent need. Manipulating the lungs' intrinsic host defenses by therapeutic delivery of certain pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODN) with mitochondrial voltage-dependent anion channel 1 (VDAC1). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), increases mitochondrial membrane potential (ΔΨm), differentially modulates ETC complex activities and consequently results in leak of electrons from ETC complex III and superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy to broadly protect against pneumonia without reliance on antibiotics.
Assuntos
Anti-Infecciosos , Pneumonia , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Anti-Infecciosos/farmacologia , Potencial da Membrana MitocondrialRESUMO
Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.
Assuntos
Anoikis , Antineoplásicos , Neoplasias , Anoikis/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metástase NeoplásicaRESUMO
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Assuntos
Cobre , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Morte Celular , Ionóforos , Neoplasias/tratamento farmacológico , Neoplasias/genética , ApoptoseRESUMO
Although the incidence and outcomes of rituximab-induced interstitial lung disease (RILD) have been partially reported, there are no systematic studies on the characteristics and types of RILD. This study aimed to investigate the clinical characteristics, bronchoalveolar lavage (BAL) findings, and treatment course of RILD in patients with non-Hodgkin lymphoma. We retrospectively analyzed the data from 321 patients with non-Hodgkin lymphoma who developed RILD between 2020 and 2022. The extent, distribution, and radiologic patterns of interstitial lung disease were determined using high-resolution computed tomography of the chest. BAL was performed in 299 (93.1%) patients to determine cellular distribution patterns and identify pathogenic microorganisms using metagenomic next-generation sequencing. All patients received combination therapy, with cyclophosphamide, doxorubicin, vincristine, and prednisone being the most commonly administered regimens. The median time from treatment to RILD development was 1.7 months. In the 217 patients who underwent metagenomic next-generation sequencing, 179 pathogenic microorganisms were detected, including 77 (43.0%) bacteria, 45 (25.1%) viruses, 28 (15.6%) Pneumocystis jirovecii strains, 17 (9.5%) fungi, 6 (3.5%) Mycobacterium tuberculosis, and 6 (3.5%) atypical pathogens. All RILD diagnoses were based on multidisciplinary team discussions and compliance with international standards. In conclusion, RILD exhibits a range of radiological and BAL patterns, reflecting different interstitial lung disease types. The most common patterns of RILD are infectious lung disease, organizing pneumonia, and nonspecific interstitial pneumonia. These findings enhance the understanding of RILD in patients with non-Hodgkin lymphoma and serve as a reference for best management guidelines in these patients.
RESUMO
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
RESUMO
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T cell receptor signaling, plays a crucial role in multiple cellular immune responses. Emerging researches have demonstrated that inhibiting HPK1 kinase function enhances T cells' ability to recognize tumor antigens and boosts anti-tumor immune responses. As a result, HPK1 has become a promising target for tumor immunotherapy. Herein, we report the design, synthesis, and biological evaluation of a series of novel HPK1 inhibitors featuring a 3-cyano-quinoline scaffold. Among these, compound 3a was identified as the most potent HPK1 inhibitor (HPK1 IC50 = 48 nM). It effectively inhibited SLP76 phosphorylation, enhanced IL-2 cytokine secretion, and reversed PGE2-induced immunosuppression in Jurkat cells. In addition, compound 3a exhibited favorable metabolic stability in mouse liver microsomes and plasma. Overall, this work provides a structurally novel lead compound for the development of HPK1 inhibitors.
RESUMO
The pleiotropic effect of cancer-associated fibroblasts (CAFs) on tumour progression depends on the environment. circFARP1 is critical for CAFs-induced gemcitabine (GEM) resistance in pancreatic cancer. Its specific role and mechanism in non-small cell lung cancer (NSCLC) have not been reported yet. We prepared a cancer-associated fibroblasts-conditioned medium (CAF-CM) to incubate the A549 cells. Quantitative real-time polymerase chain reaction was used to detect RNA levels. We detected protein expression by immunohistochemistry, immunocytochemistry, western blot and immunofluorescence. We also detected the targeting impact between circFARP1, miR-338-3p and SRY-box transcription factor 4 (SOX4) by using dual-luciferase reporter and RNA pull-down assays. We determined cell proliferation, migration and invasion capabilities through Cell Counting Kit-8 and transwell assays. In addition, we measured tumour volume and weight in vivo by establishing a xenograft tumour model. CircFARP1 levels were remarkably high in the CAFs. The transfection experiments found that circFARP1 downregulation in CAFs caused migration, proliferation and invasion inhibition of CAFs and A549 cells, whereas inhibiting miR-38-3p or overexpressing SOX4 in CAFs could significantly reverse the inhibition. In vivo study in nude mice confirmed that CAFs could promote NSCLC tumour growth and knockdown of circFARP1 could inhibit tumour growth of NSCLC, whereas miR-38-3p downregulation or SOX4 overexpression could significantly reverse the inhibition. circFARP1 promotes NSCLC development by stimulating miR-338-3p/SOX4 signalling axis to regulate CAFs.
Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Invasividade Neoplásica , RNA Circular , Fatores de Transcrição SOXC , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , RNA Circular/genética , RNA Circular/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Proliferação de Células/genética , Camundongos , Células A549 , Metástase Neoplásica , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MasculinoRESUMO
Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.
Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Humanos , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte CelularRESUMO
Hyperoxia disrupts lung development in mice and causes bronchopulmonary dysplasia (BPD) in neonates. To investigate sex-dependent molecular and cellular programming involved in hyperoxia, we surveyed the mouse lung using single cell RNA sequencing (scRNA-seq), and validated our findings in human neonatal lung cells in vitro. Hyperoxia-induced inflammation in alveolar type (AT) 2 cells gave rise to damage-associated transient progenitors (DATPs). It also induced a new subpopulation of AT1 cells with reduced expression of growth factors normally secreted by AT1 cells, but increased mitochondrial gene expression. Female alveolar epithelial cells had less EMT and pulmonary fibrosis signaling in hyperoxia. In the endothelium, expansion of Car4+ EC (Cap2) was seen in hyperoxia along with an emergent subpopulation of Cap2 with repressed VEGF signaling. This regenerative response was increased in females exposed to hyperoxia. Mesenchymal cells had inflammatory signatures in hyperoxia, with a new distal interstitial fibroblast subcluster characterized by repressed lipid biosynthesis and a transcriptomic signature resembling myofibroblasts. Hyperoxia-induced gene expression signatures in human neonatal fibroblasts and alveolar epithelial cells in vitro resembled mouse scRNA-seq data. These findings suggest that neonatal exposure to hyperoxia programs distinct sex-specific stem cell progenitor and cellular reparative responses that underpin lung remodeling in BPD.
Assuntos
Displasia Broncopulmonar , Hiperóxia , Recém-Nascido , Masculino , Feminino , Animais , Camundongos , Humanos , Displasia Broncopulmonar/metabolismo , Transcriptoma/genética , Hiperóxia/metabolismo , Animais Recém-Nascidos , Pulmão/metabolismo , Modelos Animais de DoençasRESUMO
Divergent N6-methyladenosine (m6A) modifications are dynamic and reversible posttranscriptional RNA modifications that are mediated by m6A regulators or m6A RNA methylation regulators, i.e., methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). Aberrant m6A modifications are associated with cancer occurrence, development, progression, and prognosis. Numerous studies have established that aberrant m6A regulators function as either tumor suppressors or oncogenes in multiple tumor types. However, the functions and mechanisms of m6A regulators in cancer remain largely elusive and should be explored. Emerging studies suggest that m6A regulators can be modulated by epigenetic modifications, namely, ubiquitination, SUMOylation, acetylation, methylation, phosphorylation, O-GlcNAcylation, ISGylation, and lactylation or via noncoding RNA action, in cancer. This review summarizes the current roles of m6A regulators in cancer. The roles and mechanisms for epigenetic modification of m6A regulators in cancer genesis are segregated. The review will improve the understanding of the epigenetic regulatory mechanisms of m6A regulators.
Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Acetilação , Epigênese Genética , RNARESUMO
The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.
Assuntos
Rim , Néfrons , Animais , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Glomérulos Renais/embriologia , Néfrons/embriologia , RNA Mensageiro/genética , Xenopus laevis/embriologiaRESUMO
A series of novel 9-N-substituted-13-alkylberberine derivatives from Chinese medicine were designed and synthesized with improved anti-hepatocellular carcinoma (HCC) activities. The optimal compound 4d showed strong activities against HepG2, Sk-Hep-1, Huh-7 and Hep3B cells with IC50 values of 0.58-1.15 µM, which were superior to positive reference cisplatin. Interestingly, 4d exhibited over 40-fold more potent activity against cisplatin-resistant HepG2/DPP cells while showing lower cytotoxicity in normal LX-2 cells. The mechanism studies revealed 4d greatly stabilized G-quadruplex DNA leading to intracellular c-MYC expression downregulation, blocked G2/M-phase cell cycle by affecting related p-cdc25c, cdc2 and cyclin B1 expressions, and induced apoptosis by a ROS-promoted PI3K/Akt-mitochondrial pathway. Furthermore, 4d possessed good pharmacokinetic properties and significantly inhibited the tumor growth in the H22 liver cancer xenograft mouse model without obvious toxicity. Altogether, the remarkably biological profiles of 4d both in vitro and in vivo would make it a promising candidate for HCC therapy.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Cisplatino/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Medicina Tradicional Chinesa , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Hep G2 , Apoptose , Proliferação de Células , Linhagem Celular TumoralRESUMO
In multicellular organisms, paralogs from gene duplication survive purifying selection by evolving tissue-specific expression and function. Whether this genetic redundancy is also selected for within a single cell type is unclear for multimember paralogs, as exemplified by the four obligatory Lef/Tcf transcription factors of canonical Wnt signaling, mainly due to the complex genetics involved. Using the developing mouse lung as a model system, we generate two quadruple conditional knockouts, four triple mutants, and various combinations of double mutants, showing that the four Lef/Tcf genes function redundantly in the presence of at least two Lef/Tcf paralogs, but additively upon losing additional paralogs to specify and maintain lung epithelial progenitors. Prelung-specification, pan-epithelial double knockouts have no lung phenotype; triple knockouts have varying phenotypes, including defective branching and tracheoesophageal fistulas; and the quadruple knockout barely forms a lung, resembling the Ctnnb1 mutant. Postlung-specification deletion of all four Lef/Tcf genes leads to branching defects, down-regulation of progenitor genes, premature alveolar differentiation, and derepression of gastrointestinal genes, again phenocopying the corresponding Ctnnb1 mutant. Our study supports a monotonic, positive signaling relationship between CTNNB1 and Lef/Tcf in lung epithelial progenitors as opposed to reported repressor functions of Lef/Tcf, and represents a thorough in vivo analysis of cell-type-specific genetic redundancy among the four Lef/Tcf paralogs.
Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Células-Tronco/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Feminino , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Pulmão/citologia , Camundongos , Camundongos Knockout , Análise de Célula Única , Células-Tronco/citologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genéticaRESUMO
The lung epithelium forms the first barrier against respiratory pathogens and noxious chemicals; however, little is known about how more than 90% of this barrier, made of AT1 (alveolar type 1) cells, responds to injury. Using the Sendai virus to model natural infection in mice, we find evidence that AT1 cells have an intermediary role by persisting in areas depleted of AT2 cells, upregulating IFN responsive genes, and receding from invading airway cells. Sendai virus infection mobilizes airway cells to form alveolar SOX2+ (Sry-box 2+) clusters without differentiating into AT1 or AT2 cells. Large AT2 cell-depleted areas remain covered by AT1 cells, which we name "AT2-less regions", and are replaced by SOX2+ clusters spreading both basally and luminally. AT2 cell proliferation and differentiation are largely confined to topologically distal regions and form de novo alveolar surface, with limited contribution to in situ repairs of AT2-less regions. Time-course single-cell RNA sequencing profiling and RNAscope validation suggest enhanced immune responses and altered growth signals in AT1 cells. Our comprehensive spatiotemporal and genomewide study highlights the hitherto unappreciated role of AT1 cells in lung injury-repair.
Assuntos
Células Epiteliais Alveolares , Infecções por Respirovirus , Células Epiteliais Alveolares/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Pulmão , CamundongosRESUMO
First-principles calculations are carried out to investigate the structural, electronic, and optical properties of CsGeCl3. The results indicate that CsGeCl3 undergoes three structural phase transitions from Cm or R3m to Pm3Ìm at 8.5 GPa, from Pm3Ìm to ppPv-Pnma at 9.4 GPa, and from ppPv-Pnma to I4mm at 64 GPa, respectively. Meanwhile, the relation between the band gap and pressure implies that the band gap value of ppPv-Pnma is 1.56 eV at 40 GPa, making it a potential photovoltaic material. Based on pressure-induced stable structures, the CsGeCl3 quantum dots (QDs) have been fabricated to investigate the excited-state properties by tuning ultrafast laser pulses based on time-dependent density functional theory (TDDFT). The excited-state properties show that CsGeCl3 QDs have a wider absorption range compared with their bulk materials and their optical responses can be regulated by changing the laser intensity and wavelength. Our results further reveal that the R3m-QDs exhibit excellent optical performance and have potential applications in optoelectronic devices.
RESUMO
INTRODUCTION: Abundant studies have disclosed that proteins can function as pivotal tumor promoters or suppressors in cancers' progression. This work was planned to investigate the regulatory function of N-myristoyltransferase-1 (NMT1) on non-small cell lung cancer (NSCLC) and the underlying molecular mechanisms. METHODS: The self-renewal abilities were assessed through a spheroid-formation assay. The tumorigenic abilities were examined through nude mice in vivo assay. The proteins' expression was measured through Western blot. The NMT1 protein expression in tumor tissues was measured through an IHC assay. The cell migration and invasion was confirmed through a transwell assay. The IC50 was verified through a CCK-8 assay. The NMT1 mRNA expression in NSCLC tissues was detected through RT-qPCR. RESULTS: It was demonstrated that NMT1 exhibited higher expression in spheroid cells. Additionally, NMT1 facilitated the stemness in NSCLC. It was also found that NMT1 accelerated NSCLC tumor metastasis and the resistance to cisplatin. Moreover, NMT1 activated the PI3K/AKT pathway to facilitate stemness in NSCLC. NMT1 was also higher in tumor tissues of NSCLC patients and resulted in a poor survival rate. CONCLUSION: NMT1 enhanced the stemness of NSCLC cells by activating the PI3K/AKT pathway. This discovery suggested that NMT1 may be a valid therapeutic biomarker for NSCLC.
Assuntos
Aciltransferases , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aciltransferases/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
A series of novel 9-O-substituted-13-octylberberine derivatives were designed, synthesised and evaluated for their anti-hepatocellular carcinoma (HCC) activities. Compound 6k showed the strongest activity against three human hepatoma cells including HepG2, Sk-Hep-1 and Huh-7 cells with IC50 values from 0.62 to 1.69 µM, which were much superior to berberine (IC50 >50 µM). More importantly, 6k exhibited lower cytotoxicity against normal hepatocytes L-02 with good lipid-water partition properties. The mechanism studies revealed that 6k caused G2/M phase arrest of the cell cycle, stabilised G-quadruplex DNA, and induced apoptosis via a mitochondrial apoptotic pathway. Finally, the in vivo anti-HCC activity of 6k was validated in the H22 liver cancer xenograft mouse model. Collectively, the current study would provide a new insight into the discovery of novel, safe and effective anti-HCC agents.