Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
1.
J Am Chem Soc ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584396

RESUMO

Because of their innate chemical stability, the ubiquitous perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been dubbed "forever chemicals" and have attracted considerable attention. However, their stability under environmental conditions has not been widely verified. Herein, perfluorooctanoic acid (PFOA), a widely used and detected PFAS, was found to be spontaneously degraded in aqueous microdroplets under room temperature and atmospheric pressure conditions. This unexpected fast degradation occurred via a unique multicycle redox reaction of PFOA with interfacial reactive species on the droplet surface. Similar degradation was observed for other PFASs. This study extends the current understanding of the environmental fate and chemistry of PFASs and provides insight into aid in the development of effective methods for removing PFASs.

2.
Neurobiol Dis ; 191: 106406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199273

RESUMO

BACKGROUND: Parkinson's disease (PD) patients exhibit an imbalance between neuronal activity and perfusion, referred to as abnormal neurovascular coupling (NVC). Nevertheless, the underlying molecular mechanism and how levodopa, the standard treatment in PD, regulates NVC is largely unknown. MATERIAL AND METHODS: A total of 52 drug-naïve PD patients and 49 normal controls (NCs) were enrolled. NVC was characterized in vivo by relating cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF). Motor assessments and MRI scanning were conducted on drug-naïve patients before and after levodopa therapy (OFF/ON state). Regional NVC differences between patients and NCs were identified, followed by an assessment of the associated receptors/transporters. The influence of levodopa on NVC, CBF, and ALFF within these abnormal regions was analyzed. RESULTS: Compared to NCs, OFF-state patients showed NVC dysfunction in significantly lower NVC in left precentral, postcentral, superior parietal cortex, and precuneus, along with higher NVC in left anterior cingulate cortex, right olfactory cortex, thalamus, caudate, and putamen (P-value <0.0006). The distribution of NVC differences correlated with the density of dopaminergic, serotonin, MU-opioid, and cholinergic receptors/transporters. Additionally, levodopa ameliorated abnormal NVC in most of these regions, where there were primarily ALFF changes with limited CBF modifications. CONCLUSION: Patients exhibited NVC dysfunction primarily in the striato-thalamo-cortical circuit and motor control regions, which could be driven by dopaminergic and nondopaminergic systems, and levodopa therapy mainly restored abnormal NVC by modulating neuronal activity.


Assuntos
Acoplamento Neurovascular , Doença de Parkinson , Humanos , Levodopa/farmacologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Putamen , Circulação Cerebrovascular , Dopamina
3.
Neurobiol Dis ; 194: 106472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479482

RESUMO

BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.


Assuntos
Doença de Parkinson , Pindolol/análogos & derivados , Transtorno do Comportamento do Sono REM , Humanos , Doença de Parkinson/complicações , Inquéritos e Questionários
4.
Hepatology ; 78(2): 562-577, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931467

RESUMO

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide and has emerged as a serious public health issue with no approved treatment. The development of NAFLD is strongly associated with hepatic lipid content, and patients with NAFLD have significantly higher rates of hepatic de novo lipogenesis (DNL) than lean individuals. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is dramatically increased in obesity and plays important role in proinflammatory cytokine production and insulin resistance. But the role of liver LTB4/LTB4 receptor 1 (Ltb4r1) in lipid metabolism is unclear. APPROACH AND RESULTS: Hepatocyte-specific knockout (HKO) of Ltb4r1 improved hepatic steatosis and systemic insulin resistance in both diet-induced and genetically induced obese mice. The mRNA level of key enzymes involved in DNL and fatty acid esterification decreased in Ltb4r1 HKO obese mice. LTB4/Ltb4r1 directly promoted lipogenesis in HepG2 cells and primary hepatocytes. Mechanically, LTB4/Ltb4r1 promoted lipogenesis by activating the cAMP-protein kinase A (PKA)-inositol-requiring enzyme 1α (IRE1α)-spliced X-box-binding protein 1 (XBP1s) axis in hepatocytes, which in turn promoted the expression of lipogenesis genes regulated by XBP1s. In addition, Ltb4r1 suppression through the Ltb4r1 inhibitor or lentivirus-short hairpin RNA delivery alleviated the fatty liver phenotype in obese mice. CONCLUSIONS: LTB4/Ltb4r1 promotes hepatocyte lipogenesis directly by activating PKA-IRE1α-XBP1s to promote lipogenic gene expression. Inhibition of hepatocyte Ltb4r1 improved hepatic steatosis and insulin resistance. Ltb4r1 is a potential therapeutic target for NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores do Leucotrieno B4/metabolismo , Leucotrieno B4/efeitos adversos , Leucotrieno B4/metabolismo , Camundongos Obesos , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/genética , Lipogênese/fisiologia , Dieta Hiperlipídica
5.
Cytokine ; 181: 156694, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024679

RESUMO

BACKGROUND: Acute mountain sickness (AMS) is the most prevalent condition resulting from hypobaric hypoxia (HH) at high altitudes. Although evidence suggests the involvement of inflammatory cytokines in AMS development, there is currently a lack of reports on variations in cytokine levels between individuals susceptible to AMS and those resistant to AMS prior to ascending to high altitude. Thus our current study aims to assess the predictive capability for AMS occurrence by evaluating differences in cytokine levels at low altitudes. METHODS: The present study recruited 48 participants, who ascended from low altitude to middle high-altitude (3700 m) and further to extreme high-altitude (5000 m). Based on Lake Louise Score (LLS) at the two high altitudes, participants were categorized into severe AMS-susceptible (sAMS), moderate AMS-susceptible (mAMS), and non-AMS groups. The Bio-Plex MAGPIX System was employed to measure plasma levels of 11 inflammatory cytokines. Cytokines at low altitude and middle high-altitude were analyzed through receiver operating characteristic (ROC) analysis to obtain area under the ROC curve (AUROC), sensitivity, and specificity. RESULTS: Based on LLS at 3700 m, we initially categorized the study subjects into the sAMS group (n = 8) and the Non-AMS group (n = 40). Among individuals in the non-AMS group (n = 40) at the altitude of 3700 m, those who developed AMS at the altitude of 5000 m were assigned to the mAMS group (n = 17), whereas those who did not experience AMS were included into the non-AMS group (n = 23). The concentration of TNF-α at low altitude exhibited robust predictive performance for predicting AMS occurrence at the altitude of 3700 m. Among the non-AMS group at the altitude of 3700 m, we identified that the concentration of IL-2 and IL-17A demonstrated high efficacy in predicting the onset of AMS following ascent to 5000 m. In addition, differentially expressed cytokines including IL-17A, TNF-α and IL-2 at low altitude possessed discriminatory potential among the three groups at 5000 m.. CONCLUSION: We posited that the levels of TNF-α, IL-2, IL-17A in serum of low altitude could be considered as potential biomarkers to predict the occurrence of AMS at high altitude. NEW & NOTEWORTHY: Through the two comparisons at different two altitudes (baseline level and 3700 m), we provided a model to progressively screen individuals who are susceptible and resistant to different high altitudes (3700 m and 5000 m). TNF-α could firstly screen out the AMS susceptible individuals at the altitude of 3700 m. And through its combination with IL-2 and IL-17A, we could further screen out AMS susceptible individuals at the altitude of 5000 m.


Assuntos
Doença da Altitude , Altitude , Biomarcadores , Interleucina-17 , Interleucina-2 , Fator de Necrose Tumoral alfa , Humanos , Doença da Altitude/sangue , Masculino , Biomarcadores/sangue , Interleucina-17/sangue , Adulto , Fator de Necrose Tumoral alfa/sangue , Feminino , Interleucina-2/sangue , Doença Aguda , Curva ROC , Pessoa de Meia-Idade
6.
Eur J Neurol ; 31(2): e16108, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877681

RESUMO

BACKGROUND AND PURPOSE: The specific pathophysiological mechanisms underlying postural instability/gait difficulty (PIGD) and cognitive function in Parkinson's disease (PD) remain unclear. Both postural and gait control, as well as cognitive function, are associated with the cholinergic basal forebrain (cBF) system. METHODS: A total of 84 PD patients and 82 normal controls were enrolled. Each participant underwent motor and cognitive assessments. Diffusion tensor imaging was used to detect structural abnormalities in the cBF system. The cBF was segmented using FreeSurfer, and its fiber tract was traced using probabilistic tractography. To provide information on extracellular water accumulation, free-water fraction (FWf) was quantified. FWf in the cBF and its fiber tract, as well as cortical projection density, were extracted for statistical analyses. RESULTS: Patients had significantly higher FWf in the cBF (p < 0.001) and fiber tract (p = 0.021) than normal controls, as well as significantly lower cBF projection in the occipital (p < 0.001), parietal (p < 0.001) and prefrontal cortex (p = 0.005). In patients, a higher FWf in the cBF correlated with worse PIGD score (r = 0.306, p = 0.006) and longer Trail Making Test A time (r = 0.303, p = 0.007). Attentional function (Trail Making Test A) partially mediated the association between FWf in the cBF and PIGD score (indirect effect, a*b = 0.071; total effect, c = 0.256; p = 0.006). CONCLUSIONS: Our findings suggest that degeneration of the cBF system in PD, from the cBF to its fiber tract and cortical projection, plays an important role in cognitive-motor interaction.


Assuntos
Prosencéfalo Basal , Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Imagem de Tensor de Difusão , Prosencéfalo Basal/diagnóstico por imagem , Atenção , Marcha , Água , Colinérgicos , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Equilíbrio Postural/fisiologia
7.
Analyst ; 149(16): 4230-4238, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38874099

RESUMO

Persistent luminescent nanoparticles (PLNPs) are excellent luminescent materials, and near-infrared PLNPs are efficiently applied for biosensing and bioimaging due to their advantages of no excitation, excellent light stability and long afterglow. However, due to interference from the complex environment within organisms, single-mode imaging methods often face limitations in selectivity, sensitivity, and accuracy. Therefore, it is desirable to construct a dual-mode imaging probe strategy with higher specificity and sensitivity for bioimaging. Magnetic resonance imaging (MRI) has been widely used in the field of bioimaging due to its advantages of high resolution, non-radiation and non-invasiveness. Here, by combining near-infrared PLNPs and manganese dioxide (MnO2) nanosheets, a sensitive and convenient dual-mode "turn on" bioimaging nanoprobe ZGC@MnO2 has been developed for long afterglow imaging and MRI of endogenous hydrogen peroxide (H2O2) in the tumor microenvironment (TME). The monitoring of H2O2 has garnered significant attention due to its crucial role in human pathologies. For the dual-mode "turn on" bioimaging nanoprobe, the near-infrared PLNPs of quasi-spherical ZnGa2O4:Cr (ZGC) nanoparticles were synthesized as luminophores, and MnO2 nanosheets were utilized as a fluorescence quencher, carrier and H2O2 recognizer. H2O2 in the TME could reduce MnO2 nanosheets to Mn2+ for MRI, and ZGC nanoparticles were released for long afterglow imaging. Finally, the ZGC@MnO2 nanoprobe exhibited a rapid response, an excellent signal-to-noise ratio and a limit of detection of 3.67 nM for endogenous H2O2 in the TME. This dual-mode approach enhances the detection sensitivity for endogenous H2O2, thereby facilitating the research of endogenous H2O2-associated diseases and clinical diagnostics.


Assuntos
Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Compostos de Manganês , Nanopartículas , Óxidos , Microambiente Tumoral , Peróxido de Hidrogênio/química , Humanos , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Óxidos/química , Nanopartículas/química , Animais , Camundongos , Células HeLa , Limite de Detecção
8.
Analyst ; 149(3): 807-814, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38116839

RESUMO

The discovery of reliable biomarkers is essential for early diagnosis, treatment, and prognosis assessment of diseases. Many research studies have shown that circRNA is a potential biomarker for diagnosis and prognosis of diseases. However, in situ monitoring circRNA in live cells is still a challenge at present, which brings a major limitation to the development and verification of circRNA as a disease biomarker. In this study, a catalytic hairpin assembly (CHA) reaction-based DNA octahedral amplifier (DOA) was developed for fluorescence resonance energy transfer (FRET) detection and bioimaging of circRNA in living cells. The DOA was first produced by self-assembling a DNA octahedron with six customized single-stranded DNAs, and two hairpins H1 (Cy3) and H2 (Cy5) were then hybridized to four vertices of the DNA octahedron. Idiopathic pulmonary fibrosis (IPF)-related circHIPK3 was used as the target. Once the CHA reaction from H1 and H2 on DOA was activated by a sequence-specific back-splice junction (BSJ) of circHIPK3, a significant FRET signal can be obtained from Cy3 to Cy5. The circHIPK3 was subsequently released to cause the next CHA reaction. Because the DOA has the advantages of the spatial-confinement effect, resistance to nuclease degradation and easy penetration into cells, rapid and excellent signal amplification FRET detection and bioimaging of endogenous circHIPK3 can be achieved in various cells. This study provides a high-precision assay platform to explore the possibility of using circRNA as a biomarker, and it is valuable for circRNA-related early diagnosis and treatment of diseases.


Assuntos
Técnicas Biossensoriais , Carbocianinas , MicroRNAs , MicroRNAs/genética , RNA Circular/genética , DNA/genética , Biomarcadores , Técnicas Biossensoriais/métodos , Limite de Detecção
9.
Environ Sci Technol ; 58(35): 15650-15660, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39051472

RESUMO

Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using n-octanol/water partition coefficients as a source domain. The TL-MTL-GNN model was trained to predict three bioaccumulation parameters based on enlarged data sets that cover 2496 compounds with at least one bioaccumulation parameter. Results show that the TL-MTL-GNN model outperformed single-task GNN models with and without the TL, as well as conventional machine learning models trained with molecular descriptors or fingerprints. Applicability domains were characterized by a state-of-the-art structure-activity landscape-based (abbreviated as ADSAL) methodology. The TL-MTL-GNN model coupled with the optimal ADSAL was employed to predict bioaccumulation parameters for around 60,000 chemicals, with more than 13,000 compounds identified as bioaccumulative chemicals. The high predictive accuracy and robustness of the TL-MTL-GNN model demonstrate the feasibility of integrating the TL and MTL strategy in modeling small-sized data sets. The strategy holds significant potential for addressing small data challenges in modeling environmental chemicals.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Bioacumulação
10.
Environ Sci Technol ; 58(4): 1944-1953, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38240238

RESUMO

Tissue-to-blood partition coefficients (Ptb) are key parameters for assessing toxicokinetics of xenobiotics in organisms, yet their experimental data were lacking. Experimental methods for measuring Ptb values are inefficient, underscoring the urgent need for prediction models. However, most existing models failed to fully exploit Ptb data from diverse sources, and their applicability domain (AD) was limited. The current study developed a multimodal model capable of processing and integrating textual (categorical features) and numerical information (molecular descriptors/fingerprints) to simultaneously predict Ptb values across various species, tissues, blood matrices, and measurement methods. Artificial neural network algorithms with embedding layers were used for the multimodal modeling. The corresponding unimodal models were developed for comparison. Results showed that the multimodal model outperformed unimodal models. To enhance the reliability of the model, a method considering categorical features, weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes was used to characterize the AD. The model constrained by the AD exhibited better prediction accuracy for the validation set, with the determination coefficient, root mean-square error, and mean absolute error being 0.843, 0.276, and 0.213 log units, respectively. The multimodal model coupled with the AD characterization can serve as an efficient tool for internal exposure assessment of chemicals.


Assuntos
Peixes , Relação Quantitativa Estrutura-Atividade , Animais , Reprodutibilidade dos Testes , Mamíferos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA