Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470990

RESUMO

Polarized light detection is crucial for advancements in optical imaging, positioning, and obstacle avoidance systems. While optical nanomaterials sensitive to polarization are well-established, the ability to align these materials remains a significant challenge. Here, we introduce Au-Fe3O4-Au triblock nanorods as a novel solution. Synthesized via a space-confined seeded growth method, these magnetoplasmonic nanocomposites uniquely combine the strong polarization capabilities of Au nanorods with the magnetic alignment properties of Fe3O4 nanorods. This architecture results in exceptional collective linear dichroism, achieving a polarization ratio of approximately 14 at the device level. Our nanorods exhibit high detection sensitivity and laser damage resistance, positioning them as a promising platform for developing advanced optical devices.

2.
J Am Chem Soc ; 146(15): 10655-10665, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564662

RESUMO

While Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis. Furthermore, we introduced Ni into the Co framework to tackle the issue of restricted hydrogenation ability associated with contiguous Co-Co sites. In-situ analysis indicates that the integration of Ni induces electron transfer and facilitates hydrogen spillover. This dual effect synergistically enhances the hydrogenation/desorption of olefin intermediates, resulting in a significant reduction in the yield of low-value CH4 from 27.1 to 12.6%. Through leveraging the unique properties of LDH, we have developed efficient and cost-effective catalysts for the sustainable recycling and valorization of waste polyolefin materials.

3.
J Am Chem Soc ; 146(10): 7076-7087, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428949

RESUMO

The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.

4.
Ann Vasc Surg ; 109: 370-381, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39025214

RESUMO

Promoting the establishment of collateral circulation is essential for chronic lower extremity ischemia. However, no effective therapeutic drugs have yet been developed. Recent studies discovered that in the peripheral arteries, there are γ-aminobutyric acid B1 (GABAB1) receptors expressed in endothelial cells and smooth muscle cells, these receptors may have some effects in regulating vascular functions, but the precise mechanism is not yet clear. This study explores the effect of GABAB1 receptor inhibition on angiogenesis and its regulatory mechanism. The expression of GABAB1 in human umbilical vein endothelial cells (HUVECs) was knocked down using shRNA transfection, and effects on HUVECs' proliferation, migration, and tube formation ability were detected. Western blot and RT-PCR were used to verify the signal pathway. The murine hind limb ischemia model was used to verify the effect of CGP35348, an antagonist of GABAB1R, on the recovery of blood flow perfusion and angiogenesis in ischemic tissues. Cell proliferation, migration, and tube formation ability were improved after GABAB1 receptor knockdown in HUVECs. The phosphorylation of the HIPPO/Yes-associated protein (YAP) pathway decreased, while the effect of promoting angiogenesis increased. After treating the ischemic hindlimbs of mice with GABAB1 receptor antagonists, the blood flow perfusion recovered and the angiogenesis increased. These findings demonstrate the effect of GABAB1 receptor inhibition on the HIPPO/YAP pathway in regulating angiogenesis, suggesting that inhibiting GABAB1 receptor levels might be a novel approach for chronic lower extremity ischemia diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Membro Posterior , Via de Sinalização Hippo , Células Endoteliais da Veia Umbilical Humana , Isquemia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Proteínas Serina-Treonina Quinases , Receptores de GABA-B , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Humanos , Proliferação de Células/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Isquemia/fisiopatologia , Isquemia/metabolismo , Isquemia/genética , Proteínas de Sinalização YAP/metabolismo , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Fosforilação , Antagonistas de Receptores de GABA-B/farmacologia , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fluxo Sanguíneo Regional , Circulação Colateral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Angiogênese
5.
Nano Lett ; 23(2): 685-693, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594847

RESUMO

While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.

6.
Angew Chem Int Ed Engl ; 63(3): e202316154, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058217

RESUMO

Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine-capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)-based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high-performance photovoltaic devices.

7.
Angew Chem Int Ed Engl ; : e202409288, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261282

RESUMO

Plastic pollution poses a pressing environmental challenge in modern society. Chemical catalytic conversion has emerged as a promising solution for upgrading waste plastics into valuable liquid alkanes and other high value products. However, the current methods yield mixed products with a wide carbon distribution. To address this challenge, we present a bifunctional catalytic system consisting of ß zeolite mixed hierarchical Pt@Hie-TS-1, designed for the conversion of low-density polyethylene (LDPE) into liquid alkanes. This system achieves a 94.0 % yield of liquid alkane, with 84.8 % of C5-C7 light alkanes. Combined with in situ FTIR and molecular dynamics simulation, the shape-selective mechanisms is elucidated, which ensures that only olefins of the appropriate size can diffuse to the encapsulated Pt sites within the zeolite for hydrogenation, resulting in an ultra-narrow product distribution. Furthermore, by optimizing the micro-mesopores of Pt@Hie-TS-1, the scaling relationship between the pore structure and the conversion/selectivity is identified. The rapid diffusion of olefins within these micro-mesopores significantly enhances the catalytic efficiency. Our findings contribute to the design of efficient catalysts for plastic waste valorization.

8.
Anal Chem ; 95(9): 4261-4265, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802510

RESUMO

ß-d-Glucuronidase (GUS) plays a pivotal role in both clinical treatment assessment and environmental monitoring. Existing tools for GUS detection suffer from (1) poor continuity due to a gap between the optimal pH of the probes and the enzyme and (2) diffusion from the detection site due to lack of an anchoring structure. Here we report a novel GUS pH-matching and endoplasmic reticulum-anchoring strategy for GUS recognition. The new fluorescent probe tool was termed ERNathG, which was designed and synthesized with ß-d-glucuronic acid as the GUS-specific recognition site and 4-hydroxy-1,8-naphthalimide as a fluorescence reporting group, with a p-toluene sulfonyl as an anchoring group. This probe enabled the continuous and anchored detection of GUS without pH-adjustment for the related assessment of common cancer cell lines and gut bacteria. The probe's properties are far superior to those of commonly used commercial molecules.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Corantes Fluorescentes/química , Glucuronidase/química , Bactérias/metabolismo , Ácido Glucurônico
9.
Small ; 19(17): e2207312, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36725364

RESUMO

All-inorganic lead halide perovskite nanocrystals (NCs) emerge as a rising star in photovoltaic fields on account of their excellent optoelectronic properties. However, it still remains challenging to further promote photovoltaic efficiency due to the susceptible surface and inevitable vacancies. Here, this work reports a 3D/2D core/shell perovskite heterojunction based on CsPbI3 NCs and its performance in solar cells. The guanidinium (GA+ ) rich 2D nanoshells can significantly passivate surface trap states and lower the capping ligand density, resulting in improved photoelectric properties and carrier transport and diminished nonradiative recombination centers via the hydrogen bonds from amino groups in GA+ ions. Consequently, an outstanding power conversion efficiency (PCE) of up to 15.53% is realized, substantially higher than the control device (13.77%). This work highlights the importance of surface chemistry and offers a feasible avenue to achieve high-performance perovskite NCs-based optoelectronic devices.

10.
J Endovasc Ther ; : 15266028231158294, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36891634

RESUMO

PURPOSE: This study aimed to develop and internally validate nomograms for predicting restenosis after endovascular treatment of lower extremity arterial diseases. MATERIALS AND METHODS: A total of 181 hospitalized patients with lower extremity arterial disease diagnosed for the first time between 2018 and 2019 were retrospectively collected. Patients were randomly divided into a primary cohort (n=127) and a validation cohort (n=54) at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) regression was used to optimize the feature selection of the prediction model. Combined with the best characteristics of LASSO regression, the prediction model was established by multivariate Cox regression analysis. The predictive models' identification, calibration, and clinical practicability were evaluated by the C index, calibration curve, and decision curve. The prognosis of patients with different grades was compared by survival analysis. Internal validation of the model used data from the validation cohort. RESULTS: The predictive factors included in the nomogram were lesion site, use of antiplatelet drugs, application of drug coating technology, calibration, coronary heart disease, and international normalized ratio (INR). The prediction model demonstrated good calibration ability, and the C index was 0.762 (95% confidence interval: 0.691-0.823). The C index of the validation cohort was 0.864 (95% confidence interval: 0.801-0.927), which also showed good calibration ability. The decision curve shows that when the threshold probability of the prediction model is more significant than 2.5%, the patients benefit significantly from our prediction model, and the maximum net benefit rate is 30.9%. Patients were graded according to the nomogram. Survival analysis found that there was a significant difference in the postoperative primary patency rate between patients of different classifications (log-rank p<0.001) in both the primary cohort and the validation cohort. CONCLUSION: We developed a nomogram to predict the risk of target vessel restenosis after endovascular treatment by considering information on lesion site, postoperative antiplatelet drugs, calcification, coronary heart disease, drug coating technology, and INR. CLINICAL IMPACT: Clinicians can grade patients after endovascular procedure according to the scores of the nomograms and apply intervention measures of different intensities for people at different risk levels. During the follow-up process, an individualized follow-up plan can be further formulated according to the risk classification. Identifying and analyzing risk factors is essential for making appropriate clinical decisions to prevent restenosis.

11.
J Environ Sci Health B ; 58(2): 150-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36728597

RESUMO

A modified QuEChERS pretreatment method and LC-MS/MS technique were performed to simultaneously determine four pesticide (Hexachlorophene, Dinex, Dinosam, Dinoterb) residues in agricultural products. Through the optimization of LC-MS/MS detection parameters in SIM mode, the optimal instrument conditions are obtained. The modified QuEChERS method was used to pretreat the samples. Solid phase extractants PSA, C18 and GCB were used for sample purification. The research results showed that the correlation coefficients of the four pesticides were all greater than 0.991, which had a good linear relationship. The limits of quantitation (LOQ) of the four pesticides were 0.05-0.56 µg/kg. The recoveries were 70.51-113.20% with relative standard deviations (RSDS) of 1.6-11.2%. The developed method can provide reliable data support for the subsequent simultaneous detection of these four pesticides.


Assuntos
Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Cromatografia Líquida/métodos , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos
12.
Angew Chem Int Ed Engl ; 62(38): e202308930, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37527972

RESUMO

Incorporating high-energy ultraviolet (UV) photons into photothermal catalytic processes may enable photothermal-photochemical synergistic catalysis, which represents a transformative technology for waste plastic recycling. The major challenge is avoiding side reactions and by-products caused by these energetic photons. Here, we break through the limitation of the existing photothermal conversion mechanism and propose a photochromic-photothermal catalytic system based on polyol-ligated TiO2 nanocrystals. Upon UV or sunlight irradiation, the chemically bonded polyols can rapidly capture holes generated by TiO2 , enabling photogenerated electrons to reduce Ti4+ to Ti3+ and produce oxygen vacancies. The resulting abundant defect energy levels boost sunlight-to-heat conversion efficiency, and simultaneously the oxygen vacancies facilitate polyester glycolysis by activating the nucleophilic addition-elimination process. As a result, compared to commercial TiO2 (P25), we achieve 6-fold and 12.2-fold performance enhancements under thermal and photothermal conditions, respectively, while maintaining high selectivity to high-valued monomers. This paradigm-shift strategy directs energetic UV photons for activating catalysts and avoids their interaction with reactants, opening the possibility of substantially elevating the efficiency of more solar-driven catalysis.

13.
Angew Chem Int Ed Engl ; 62(47): e202313174, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37799095

RESUMO

Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state. This approach involves the synthesis of p-Ru/SBA catalysts, in which Ru nanoparticles are uniformly distributed within the channels of an SBA-15 support, using a precise impregnation method. The unique design of the p-Ru/SBA catalyst has demonstrated significant improvements in catalytic performance for the conversion of polyethylene into high-value liquid fuels, particularly diesel. The catalyst achieved a high solid conversion rate of 1106 g ⋅ gRu -1 ⋅ h-1 at 230 °C. Comparatively, this catalytic activity is 4.9 times higher than that of a control catalyst, Ru/SiO2 , and 14.0 times higher than that of a commercial catalyst, Ru/C, at 240 °C. This remarkable catalytic activity opens up immense opportunities for the chemical upcycling of waste plastics.

14.
J Am Chem Soc ; 144(50): 23073-23080, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36503222

RESUMO

Solar-to-fuel conversion followed by secondary utilization in fuel cells provides an appealing approach to alleviating global energy shortages but is largely restricted by the complex design of power systems and the development of functional catalysts. Herein, we presented a biohybrid photoelectrochemical cell (BPEC) to implement sustainable solar-to-fuel-to-electric power conversion in a single compartment, by ingeniously combining reliable photoelectrochemical H2O2 generation with efficient bioelectrochemical H2O2 consumption. Specifically, the BPEC is composed of a Mo-modified BiVO4 (Mo:BiVO4) photoanode and a horseradish peroxidase (HRP)/pyrene-modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (bis-Pyr-ABTS)/carbon nanotubes with an encapsulated Co nanoparticle (Co/CNTs) biocathode. Upon photoexcitation, two-electron H2O oxidation can be carried out at the Mo-BiVO4 photoanode to produce H2O2, followed by electroenzymatic reduction of H2O2 to H2O by HRP with the help of a bis-Pyr-ABTS redox mediator at the biocathode. Besides, in response to the insufficient Faradaic efficiency of H2O2 generation at the photoanode, the functional Co/CNTs catalysts, possessing prominent electrocatalytic selectivity toward two-electron O2 reduction (electron transfer number = 2.6), are modified on the biocathode, thus clearly defining effective H2O/H2O2/O2 self-circulation in this device. This developed BPEC obtains an open-circuit potential of 1.03 ± 0.02 V and a maximum power density of 0.18 ± 0.02 mW cm-2. Moreover, inspired by the particular advantage of enzymatic biofuel cells for easy miniaturization, an enclosed "sandwich-like" BPEC of approximately 1 cm3 size is fabricated and delivers a power output of 0.13 ± 0.03 mW cm-2. Our work represents a controllable approach for meaningful solar energy utilization, beyond traditional artificial photosynthesis, and can further provide a significant paradigm shift in building an energy-sustainable society.


Assuntos
Nanotubos de Carbono , Energia Solar , Peróxido de Hidrogênio , Ácidos Sulfônicos
15.
Small ; 18(13): e2107548, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146921

RESUMO

All-inorganic lead halide perovskite (CsPbX3 , X = Cl, Br, I, or their mixture) nanocrystals (NCs) have achieved inspiring advancements in optoelectronic fields but still suffer from poor durability when exposed to environmental stimuli such as water, irradiation and heat. Herein, a strategy of employing pyrophosphate as the inert shell for CsPbX3 NCs is reported. The strong binding between pyrophosphate and CsPbBr3 surface can stabilize the perovskite structure well. The as-obtained core@shell CsPbBr3 @NH4 AlP2 O7 NCs exhibit impressive stability against water and maintain the initial optical properties with negligible change in 400 days. Furthermore, significant improvement of irradiation/thermal resistance is realized due to the protecting role of pyrophosphate. The NCs can retain 100% and ≈90% of the original PL after hundreds of heating/cooling cycles and several hundred hours of UV light irradiation, respectively. As a result, the core@shell products can be directly used for high-resolution inkjet printing, enabling the printed fluorescent information to be resistant under harsh environmental conditions. This work provides a promising way for the synthesis of highly stable encapsulated perovskite NCs and demonstrates a great potential in practical applications.


Assuntos
Nanopartículas , Água , Difosfatos , Nanopartículas/química
16.
Acc Chem Res ; 54(5): 1168-1177, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33440942

RESUMO

The unprecedented development of inorganic nanostructure synthesis has paved the way toward their broad applications in areas such as food science, agroforestry, energy conversion, and biomedicine. The precise manipulation of the nucleation and subsequent growth has been recognized as the central guiding principle for controlling the size and morphology of the nanostructures. However, conventional colloid syntheses based on direct precipitation reactions still have limitations in their versatility and extendibility. The crystal structure of a material determines the limited number of possible morphologies that its nanostructures can adopt. Further, as nucleation and growth kinetics are sensitive to not only the nature of the precipitation reactions but also ligands and ripening effect, rigorous control of reaction conditions must be established for every specific synthesis. In addition, multiple experimental parameters are entangled with each other, thereby requiring rigorous control of all reaction conditions. As a result, it is usually challenging to extend a synthetic recipe from one material to another. As an alternative method, the direct transformation of existing nanostructures into target ones has become an effective and robust approach capable of creating various complex nanostructures that are otherwise challenging to obtain using conventional methods. To this end, an in-depth understanding of nanoscale transformation toward the synthesis of inorganic nanostructures with diverse properties and applications is highly desirable.In this Account, we aim to reveal the critical effect of the interfacial diffusion on controlled nanoscale transformation. We first discuss how the interdiffusion rates determine the morphology and properties of bimetallic nanostructures. While equal interdiffusion rates lead to perfect mixing and generate fully alloyed nanostructures, interdiffusion at unequal rates creates vacancies in the fast diffusion side, which may cause dramatic morphological transformation to the nanostructures. Then, we introduce interfacial reactions, including the Kirkendall cavitation process, elimination reaction, and solid-state reaction, to promote the unbalanced interdiffusion and generalize nanoscale transformations in materials of various compositions, morphologies, and crystal structures. Finally, we discuss the use of capping ligands to inhibit the diffusion of atoms on one side of the interface in order to enable selective etching or transformation of the nanostructures. By modifying the nanostructured surface with specific capping ligands, the diffusion of surface atoms is restricted. When nanoparticles undergo chemical reactions (such as etching or heating), the outward diffusion of substances dominates, thereby successfully achieving chemical and morphological transformations. We believe that controlled interfacial diffusion can effectively manipulate nanoscale transformations, thus providing new strategies for the custom synthesis of multifunctional nanomaterials for various specific applications.

17.
BMC Endocr Disord ; 22(1): 34, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115003

RESUMO

BACKGROUND: The ketogenic diet (KD) is characterized by fat as a substitute of carbohydrates for the primary energy source. There is a large number of overweight or obese people with type 2 diabetes mellitus (T2DM), while this study aims to observe periodic ketogenic diet for effect on overweight or obese patients newly diagnosed as T2DM. METHODS: A total of 60 overweight or obese patients newly diagnosed as T2DM were randomized into two groups: KD group, which was given ketogenic diet, and control group, which was given routine diet for diabetes, 30 cases in each group. Both dietary patterns lasted 12 weeks, and during the period, the blood glucose, blood lipid, body weight, insulin, and uric acid before and after intervention, as well as the significance for relevant changes, were observed. RESULTS: For both groups, the weight, BMI(body mass index), Waist, TG (triglyceride), TC(cholesterol), LDL (low-density lipoprotein cholesterol), HDL (high-density lipoprotein cholesterol), FBG (fasting glucose), FINS (fasting insulin), HbA1c (glycosylated hemoglobin) were decreased after intervention (P < 0.05), while the decrease rates in the KD group was more significant than the control group. However, UA(serum uric acid) in the KD group showed an upward trend, while in the control group was not changed significantly (P > 0.05).The willingness to adhere to the ketogenic diet over the long term was weaker than to the routine diet for diabetes. CONCLUSION: Among the overweight or obese patients newly diagnosed as type 2 diabetes mellitus, periodic ketogenic diet can not only control the body weight, but also control blood glucose and lipid, but long-term persistence is difficult.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Dieta Cetogênica , Obesidade/dietoterapia , Sobrepeso/dietoterapia , Adulto , Biomarcadores/sangue , Feminino , Humanos , Masculino
18.
J Nanobiotechnology ; 20(1): 422, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153544

RESUMO

BACKGROUND: Patients with critical limb ischemia (CLI) are at great risk of major amputation and cardiovascular events. Adipose-derived mesenchymal stem cell (ADSC) therapy is a promising therapeutic strategy for CLI, but the poor engraftment and insufficient angiogenic ability of ADSCs limit their regenerative potential. Herein, we explored the potential of human umbilical vein endothelial cells (HUVECs)-derived small extracellular vesicles (sEVs) for enhancing the therapeutic efficacy of ADSCs in CLI. RESULTS: sEVs derived from hypoxic HUVECs enhanced the resistance of ADSCs to reactive oxygen species (ROS) and further improved the proangiogenic ability of ADSCs in vitro. We found that the hypoxic environment altered the composition of sEVs from HUVECs and that hypoxia increased the level of miR-486-5p in sEVs. Compared to normoxic sEVs (nsEVs), hypoxic sEVs (hsEVs) of HUVECs significantly downregulated the phosphatase and tensin homolog (PTEN) via direct targeting of miR-486-5p, therefore activating the AKT/MTOR/HIF-1α pathway and influencing the survival and pro-angiogenesis ability of ADSCs. In a hindlimb ischemia model, we discovered that hsEVs-primed ADSCs exhibited superior cell engraftment, and resulted in better angiogenesis and tissue repair. CONCLUSION: hsEVs could be used as a therapeutic booster to improve the curative potential of ADSCs in a limb ischemia model. This finding offers new insight for CLI treatment.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Tecido Adiposo/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tensinas/metabolismo
19.
Ann Vasc Surg ; 81: 240-248, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34748950

RESUMO

OBJECTIVE: To determine the risk for pulmonary embolism (PE) and explore the relationship between the site of thrombosis and PE in patients with acute lower extremity deep vein thrombosis (DVT). METHODS: A total of 1585 hospitalized patients first diagnosed with acute lower extremity DVT were investigated retrospectively. The patients were divided into two groups: the non-PE group (Group 1) and the PE group (Group 2). Then, Group 2 was divided into two subgroups: asymptomatic pulmonary embolism (asPE, Group 2a) and symptomatic pulmonary embolism (sPE, Group 2b). Kaplan-Meier curves and logistic regression analysis were used to explore the relevant risk factors for PE. RESULTS: Among 1585 patients, 458 patients suffered from PE, accounting for 28.9%. 102 (22.3%) of them had the typical clinical manifestations of PE and were defined as sPE, and the remaining 356 (77.7%) patients were classified as asPE. Patients with proximal lower extremity DVT were significantly more predominant in the PE group than in the non-PE group (92.8% vs. 86.2%, P<0.001). Moreover, in Group 2, patients with typical PE manifestations showed a higher proportion of patients with right lower extremity DVT than left lower extremity DVT (26.7% vs. 17.7%, P = 0.035), and bilateral lower extremity DVT than unilateral DVT (44.1% vs. 20.5%, P<0.001). By multivariate analysis, alcohol consumption (OR, 1.824; 95% CI, 1.194-2.787; P = 0.005), heart failure (OR, 2.345; 95% CI, 1.560-3.526; P<0.001), proximal DVT (OR, 2.096; 95% CI,1.407-3.123; P<0.001) were independent risk factors for PE. CONCLUSIONS: Patients with proximal acute lower extremity DVT were more likely to suffer from PE than those with distal DVT. Patients with right acute lower extremity DVT had a higher risk of sPE than patients with left acute lower extremity DVT. Alcohol consumption and heart failure were associated with the occurrence of PE in patients with acute lower extremity DVT.


Assuntos
Embolia Pulmonar , Trombose Venosa , Humanos , Extremidade Inferior/irrigação sanguínea , Embolia Pulmonar/complicações , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Trombose Venosa/complicações , Trombose Venosa/epidemiologia
20.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557806

RESUMO

Pesticide residues in food have become an important factor seriously threatening human health. Therefore, this study was conducted to determine the pesticide residues in fruits and vegetables commonly found in Fujian, China, with the aim of constructing a simple and rapid method for pesticide residue monitoring. We collected 5607 samples from local markets and analyzed them for the presence of 45 pesticide residues. A fast, easy, inexpensive, effective, robust, and safe (QuEChERS) multi-residue extraction method followed by liquid chromatography equipped with triple-quadrupole mass spectrometry (LC-MS/MS) was successfully established. This 12-min-long analytical method detects and quantifies pesticide residues with acceptable validation performance parameters in terms of sensitivity, selectivity, linearity, the limit of quantification, accuracy, and precision. The linear range of the calibration curves ranged from 5 to 200 mg/L, the limits of detection for all pesticides ranged from 0.02 to 1.90 µg/kg, and the limits of quantification for the pesticides were 10 µg/kg. The recovery rates for the three levels of fortification ranged from 72.0% to 118.0%, with precision values (expressed as RSD%) less than 20% for all of the investigated analytes. The results showed that 726 (12.95%) samples were contaminated with pesticide residues, 94 (1.68%) samples exceeded the maximum residue limit (MRL) of the national standard (GB 2763-2021, China), 632 (11.23%) samples were contaminated with residues below the MRL, and 4881 (87.05%) samples were pesticide residue-free. In addition, the highest number of multiple pesticide residues was observed in bananas and peppers, which were contaminated with acetamiprid, imidacloprid, pyraclostrobin, and thiacloprid.


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Cromatografia Líquida/métodos , Frutas/química , Resíduos de Praguicidas/análise , Verduras/química , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise , Praguicidas/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA