Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1423-1434, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38171910

RESUMO

Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu-N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C-C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm-2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.

2.
Small ; : e2402998, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716678

RESUMO

Aqueous zinc-based batteries (AZBs) are promising energy storage solutions with remarkable safety, abundant Zn reserve, cost-effectiveness, and relatively high energy density. However, AZBs still face challenges such as anode dendrite formation that reduces cycling stability and limited cathode capacity. Recently, low-dimensional metal-organic frameworks (LD MOFs) and their derivatives have emerged as promising candidates for improving the electrochemical performance of AZBs owing to their unique morphologies, high structure tunability, high surface areas, and high porosity. However, clear guidelines for developing LD MOF-based materials for high-performance AZBs are scarce. In this review, the recent progress of LD MOF-based materials for AZBs is critically examined. The typical synthesis methods and structural design strategies for improving the electrochemical performance of LD MOF-based materials for AZBs are first introduced. The recent noteworthy research achievements are systematically discussed and categorized based on their applications in different AZB components, including cathodes, anodes, separators, and electrolytes. Finally, the limitations are addressed and the future perspectives are outlined for LD MOFs and their derivatives in AZB applications. This review provides clear guidance for designing high-performance LD MOF-based materials for advanced AZBs.

3.
Small ; : e2307795, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085109

RESUMO

Transition metal selenides (TMSs) have great potential as cathode materials for alkaline Zn batteries (AZBs) owing to their high theoretical capacity and metallic conductivity. However, achieving a high specific capacity remains a formidable challenge due to the low structural stability and sluggish reaction kinetics of single-phase TMS. Herein, a facile method for fabricating a robust CoSe2 @Ni3 Se4 @Ni(OH)2 superstructure nanoarray (CNSNA) as an AZB cathode is presented. The sophisticated design enables structural stability and abundant active surface sites for efficient charge storage. Furthermore, the redox mediator K3 [Fe(CN)6 ] is employed to expedite the reaction kinetics and introduce supplementary redox reactions, further enhancing the charge storage capability. Consequently, the CNSNA electrode delivers an exceptional specific capacitance (609.08 mAh g-1 at 1 A g-1 ), surpassing all previously reported selenide-based materials. High-rate capability (239.37 mAh g-1 at 20 A g-1 ) and long cycling stability have also been achieved. The comprehensive charge storage mechanism studies confirmed the structural integrity, kinetic improvement, and high reactivity of the CNSNA superstructure. Moreover, the corresponding AZB based on CNSNA demonstrates an extraordinarily high energy density of 516.58 Wh kg-1 . The work offers guidance in the construction of superstructure-based TMS electrode materials, paving the way for the development of high-performance AZBs.

4.
Chem Rec ; 23(6): e202300006, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942948

RESUMO

Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self-aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high-performance MOF composites and derivatives in the field of EES.


Assuntos
Estruturas Metalorgânicas , Condutividade Elétrica , Fontes de Energia Elétrica , Eletrodos , Porosidade
5.
Small ; 18(32): e2203307, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843875

RESUMO

Metal-organic frameworks (MOFs), known as porous coordination polymers, have attracted intense interest as electrode materials for supercapacitors (SCs) owing to their advantageous features including high surface area, tunable porous structure, structural diversity, etc. However, the insulating nature of most MOFs has impeded their further electrochemical applications. A common solution for this issue is to transform pristine MOFs into more stable and conductive metal compounds/porous carbon materials through pyrolysis, which however losses the inherent merits of MOFs. To find a consummate solution, recently a surge of research devoted to improving the electrical conductivity of pristine MOFs for SCs has been carried out. In this review, the most related research work on pristine MOF-based materials is reviewed and three effective strategies (chemical structure design of conductive MOFs (c-MOFs), composite design, and binder-free structure design) which can significantly increase their conductivity and consequently the electrochemical performance in SCs are proposed. The conductivity enhancement mechanism in each approach is well analyzed. The representative research works on using pristine MOFs for SCs are also critically discussed. It is hoped that the new insights can provide guidance for developing high-performance electrode materials based on pristine MOFs with high conductivity for SCs in the future.

6.
Inorg Chem ; 61(3): 1787-1796, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34991312

RESUMO

High-performance microwave-absorbing materials (MAMs) derived from metal-organic frameworks (MOFs) have attracted considerable attention due to their tunable chemical composition and microstructure. In this contribution, a core-shell-structured Co/MnO/C nanocomplex was prepared using a CoMn-MIL MOF by a facile hydrothermal synthesis and subsequent pyrolysis process. The optimal microwave absorption (MA) property of the as-prepared Co/MnO/C nanocomplex was achieved by the regulation of the Co2+/Mn2+ molar ratio. The minimum reflection loss (RLmin) of the Co/MnO/C-31 nanocomplex was low to -55.0 dB at 16.2 GHz with a thickness of 1.49 mm, and the effective absorption bandwidth (EAB) was high to 5.95 GHz (12.05-18 GHz) at a thickness of 1.8 mm. The mixed-metal nanocomplex with the core-shell structure exhibited outstanding MA performance, corresponding to the synergetic effect of the magnetic and dielectric loss. It provides a high efficiency strategy for rendering low reflection loss and broad EAB to high-performance MAMs.

7.
Inorg Chem ; 61(11): 4555-4560, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35257588

RESUMO

Herein, by replacement of the linear terephthalate linker with the bending 2,5-thiophenedicarboxylate (tdc2-) linker in the typical (3,9)-connected metal-organic framework, with a reduced 8-connected hydroxyl-centered trinuclear cluster, a new (3,8)-connected network, [Ni3(µ3-OH)(tdc)3(tpp)] [DZU-1; tpp = 2,4,6-tris(4-pyridyl)pyridine], was synthesized. The modified pore environment enables DZU-1 to selectively adsorb C2H2 over CO2 in an efficient manner.

8.
J Am Chem Soc ; 143(3): 1485-1492, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439004

RESUMO

Ethylene production from C2 hydrocarbon mixtures through one separation step is desirable but challenging because of the similar size and physical properties of acetylene, ethylene, and ethane. Herein, we report three new isostructural porous coordination networks (NPU-1, NPU-2, NPU-3; NPU represents Northwestern Polytechnical University) that are sustained by 9-connected nodes based upon a hexanuclear metal cluster of composition [Mn6(µ3-O)2(CH3COO)3]6+. NPU-1/2/3 exhibit a dual cage structure that was systematically fine-tuned in terms of cage size to realize selective adsorption of C2H2 and C2H6 over C2H4. Dynamic breakthrough experiments demonstrated that NPU-1 produces ethylene in >99.9% purity from a three-component gas mixture (1:1:1 C2H2/C2H4/C2H6). Molecular modeling studies revealed that the dual adsorption preference for C2H2 and C2H6 over C2H4 originates from (a) strong hydrogen-bonding interactions between electronegative carboxylate O atoms and C2H2 molecules in one cage and (b) multiple non-covalent interactions between the organic linkers of the host network and C2H6 molecules in the second cage.

9.
Chemistry ; 27(36): 9446-9453, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33837618

RESUMO

Rigid molecular sieving materials are the ideal candidates for gas separation (e. g., C2 H2 /C2 H4 ) due to their ultrahigh adsorption selectivity and the absence of gas co-adsorption. However, the absolute molecular sieving effect for C2 H2 /C2 H4 separation has rarely been realized because of their similar physicochemical properties. Herein, we demonstrate the absolute molecular sieving of C2 H2 from C2 H4 by a rigid ultra-microporous metal-organic framework (F-PYMO-Cu) with 1D regular channels (pore size of ca. 3.4 Å). F-PYMO-Cu exhibited moderate acetylene uptake (35.5 cm3 /cm3 ), but very low ethylene uptake (0.55 cm3 /cm3 ) at 298 K and 1 bar, yielding the second highest C2 H2 /C2 H4 uptake ratio of 63.6 up to now. One-step C2 H4 production from a binary mixture of C2 H2 /C2 H4 and a ternary mixture of C2 H2 /CO2 /C2 H4 at 298 K was achieved and verified by dynamic breakthrough experiments. Coupled with excellent thermal and water stability, F-PYMO-Cu could be a promising candidate for industrial C2 separation tasks.

10.
Chemistry ; 27(50): 12753-12757, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34173276

RESUMO

Low-concentration ethane capture is crucial for environmental protection and natural gas purification. The ideal physisorbent with strong C2 H6 interaction and large C2 H6 uptake at low-concentration level has rarely been reported, due to the large pKa value and small quadrupole moment of C2 H6 . Herein, we demonstrate the perfectly size matching between the ultramicropore (pore size of 4.6 Å) and ethane (kinetic diameter of 4.4 Å) in a nickel pyridine-4-carboxylate metal-organic framework (IISERP-MOF2), which enables the record-breaking performance for low concentration C2 H6 capture. IISERP-MOF2 exhibits the large C2 H6 adsorption enthalpy of 56.7 kJ/mol, and record-high C2 H6 uptake at low pressure of 0.01-0.1 bar and 298 K (1.8 mmol/g at 0.01 bar). Molecule simulations and C2 H6 -loading crystal structure analysis revealed that the maximized interaction sites in IISERP-MOF2 with ethane molecule originates the strong C2 H6 adsorption. The dynamic breakthrough experiments for gas mixtures of C2 H6 /N2 (1/999, v/v) and C2 H6 /CH4 (5/95, v/v) proved the excellent low-concentration C2 H6 capture performance.


Assuntos
Gases , Estruturas Metalorgânicas , Adsorção , Termodinâmica
11.
Langmuir ; 37(47): 13838-13845, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34788027

RESUMO

A combined experimental and theoretical study of C2H2 and CO2 adsorption and separation was performed in two isostructural molecular porous materials (MPMs): MPM-1-Cl ([Cu2(adenine)4Cl2]Cl2) and MPM-1-TIFSIX ([Cu2(adenine)4(TiF6)2]). It was revealed that MPM-1-Cl displayed higher low-pressure uptake, isosteric heat of adsorption (Qst), and selectivity for C2H2 than CO2, whereas the opposite was observed for MPM-1-TIFSIX. While MPM-1-Cl contains only one type of accessible channel, which has a greater preference toward C2H2, MPM-1-TIFSIX contains three distinct accessible channels, one of which is a confined region between two large channels that represents the primary binding site for both adsorbates. According to molecular simulations, the initial adsorption site in MPM-1-TIFSIX interacts more strongly with CO2 than C2H2, thus explaining the inversion of adsorbate selectivity relative to MPM-1-Cl.

12.
Inorg Chem ; 59(18): 13019-13023, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32865397

RESUMO

The pore-size effect on ethane adsorption and ethane/ethylene separation in three isostructural metal azolate frameworks (MAF-123-Mn/Zn/Cu) were thoroughly investigated. MAF-123-Mn/Zn/Cu were synthesized by the solvothermal method on a gram scale. Decreasing the pore size from 6.1 to 4.9 Å leads to an increase in the ethane adsorption energy from 23 to 27.5 kJ mol-1 and further ethane/ethylene separation efficiency. Molecule simulations revealed that a shorter ethane-framework interaction distance in MAF-123-Zn than that in MAF-123-Mn is responsible for the increased adsorption energy. Dynamic breakthrough experiments manifest that these metal azolate frameworks can effectively produce high-purity ethylene from ethane in one adsorption step.

13.
J Am Chem Soc ; 140(46): 15572-15576, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30395458

RESUMO

We report a 2-fold interpenetrated primitive cubic (pcu) network X-pcu-5-Zn, [Zn2(DMTDC)2(dpe)] (H2DMTDC = 3,4-dimethylthieno[2,3- b]thiophene-2,5-dicarboxylic acid, dpe = 1,2-di(4-pyridyl)ethylene), that exhibits reversible switching between an as-synthesized "open" phase, X-pcu-5-Zn-α, and two nonporous or "closed" polymorphs, X-pcu-5-Zn-ß and X-pcu-5-Zn-γ. There are two unusual features of X-pcu-5-Zn. The first relates to its sorption properties, which reveal that the α form exhibits high CO2 uptake (ca. 255 cm3/g at 195 K) via reversible closed-to-open switching (type F-IV isotherm) of the type desirable for gas and vapor storage; there are only three other reports of porous materials that combine these two features. Second, we could only isolate the ß form by activation of the CO2 loaded α form and it persists through multiple CO2 adsorption/desorption cycles. We are unaware of a new polymorph having been isolated in such a manner. That the observed phase changes of X-pcu-5-Zn-α occur in single-crystal-to-single-crystal fashion enabled structural characterization of the three forms; γ is a coordination isomer of α and ß, both of which are based upon "paddlewheel" clusters.

14.
Angew Chem Int Ed Engl ; 57(34): 10971-10975, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29972279

RESUMO

Highly selective separation and/or purification of acetylene from various gas mixtures is a relevant and difficult challenge that currently requires costly and energy-intensive chemisorption processes. Two ultramicroporous metal-organic framework physisorbents, NKMOF-1-M (M=Cu or Ni), offer high hydrolytic stability and benchmark selectivity towards acetylene versus several gases at ambient temperature. The performance of NKMOF-1-M is attributed to their exceptional acetylene binding affinity as revealed by modelling and several experimental studies: in situ single-crystal X-ray diffraction, FTIR, and gas mixture breakthrough tests. NKMOF-1-M exhibit better low-pressure uptake than existing physisorbents and possesses the highest selectivities yet reported for C2 H2 /CO2 and C2 H2 /CH4 . The performance of NKMOF-1-M is not driven by the same mechanism as current benchmark physisorbents that rely on pore walls lined by inorganic anions.

15.
Angew Chem Int Ed Engl ; 57(13): 3332-3336, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29377460

RESUMO

Removal of CO2 from CO gas mixtures is a necessary but challenging step during production of ultra-pure CO as processed from either steam reforming of hydrocarbons or CO2 reduction. Herein, two hybrid ultramicroporous materials (HUMs), SIFSIX-3-Ni and TIFSIX-2-Cu-i, which are known to exhibit strong affinity for CO2 , were examined with respect to their performance for this separation. The single-gas CO sorption isotherms of these HUMs were measured for the first time and are indicative of weak affinity for CO and benchmark CO2 /CO selectivity (>4000 for SIFSIX-3-Ni). This prompted us to conduct dynamic breakthrough experiments and compare performance with other porous materials. Ultra-pure CO (99.99 %) was thereby obtained from CO gas mixtures containing both trace (1 %) and bulk (50 %) levels of CO2 in a one-step physisorption-based separation process.

16.
Angew Chem Int Ed Engl ; 57(20): 5684-5689, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29575465

RESUMO

Herein, we report that a new flexible coordination network, NiL2 (L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), with diamondoid topology switches between non-porous (closed) and several porous (open) phases at specific CO2 and CH4 pressures. These phases are manifested by multi-step low-pressure isotherms for CO2 or a single-step high-pressure isotherm for CH4 . The potential methane working capacity of NiL2 approaches that of compressed natural gas but at much lower pressures. The guest-induced phase transitions of NiL2 were studied by single-crystal XRD, in situ variable pressure powder XRD, synchrotron powder XRD, pressure-gradient differential scanning calorimetry (P-DSC), and molecular modeling. The detailed structural information provides insight into the extreme flexibility of NiL2 . Specifically, the extended linker ligand, L, undergoes ligand contortion and interactions between interpenetrated networks or sorbate-sorbent interactions enable the observed switching.

17.
Langmuir ; 32(44): 11492-11505, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27749073

RESUMO

Molecular simulations of CO2 and H2 sorption were performed in MPM-1-Cl and MPM-1-TIFSIX, two robust molecular porous materials (MPMs) with the empirical formula [Cu2(adenine)4Cl2]Cl2 and [Cu2(adenine)4(TiF6)2], respectively. Recent experimental studies have shown that MPM-1-TIFSIX displayed higher CO2 uptake and isosteric heat of adsorption (Qst) than MPM-1-Cl [Nugent, P. S.; et al. J. Am. Chem. Soc. 2013, 135, 10950-10953]. This was verified through the simulations executed herein, as the presented simulated CO2 sorption isotherms and Qst values are in very good agreement with the corresponding experimental data for both MPMs. We also report experimental H2 sorption data in both MPMs. Experimental studies revealed that MPM-1-TIFSIX exhibits high H2 uptake at low loadings and an initial H2 Qst value of 9.1 kJ mol-1. This H2 Qst value is greater than that for a number of existing metal-organic frameworks (MOFs) and represents the highest yet reported for a MPM. The remarkable H2 sorption properties for MPM-1-TIFSIX have been confirmed through our simulations. The modeling studies revealed that only one principal sorption site is present for CO2 and H2 in MPM-1-Cl, which is sorption onto the Cl- counterions within the large channels. In contrast, three different sorption sites were discovered for both CO2 and H2 in MPM-1-TIFSIX: (1) between two TIFSIX groups within a small passage connecting the large channels, (2) onto the TIFSIX ions lining the large channels, and (3) within the small channels. This study illustrates the detailed insights that molecular simulations can provide on the CO2 and H2 sorption mechanism in MPMs.

18.
Angew Chem Int Ed Engl ; 55(35): 10268-72, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27439315

RESUMO

Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-ß, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-ß is stable to moisture and its separation performance is unaffected by humidity.

19.
Angew Chem Int Ed Engl ; 54(48): 14372-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26440308

RESUMO

Sequestration of CO2, either from gas mixtures or directly from air (direct air capture, DAC), could mitigate carbon emissions. Here five materials are investigated for their ability to adsorb CO2 directly from air and other gas mixtures. The sorbents studied are benchmark materials that encompass four types of porous material, one chemisorbent, TEPA-SBA-15 (amine-modified mesoporous silica) and four physisorbents: Zeolite 13X (inorganic); HKUST-1 and Mg-MOF-74/Mg-dobdc (metal-organic frameworks, MOFs); SIFSIX-3-Ni, (hybrid ultramicroporous material). Temperature-programmed desorption (TPD) experiments afforded information about the contents of each sorbent under equilibrium conditions and their ease of recycling. Accelerated stability tests addressed projected shelf-life of the five sorbents. The four physisorbents were found to be capable of carbon capture from CO2-rich gas mixtures, but competition and reaction with atmospheric moisture significantly reduced their DAC performance.

20.
Eur J Drug Metab Pharmacokinet ; 39(1): 25-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23681836

RESUMO

Magnesium isoglycyrrhizinate (MI) has been complementarily used for restoring the hepatic impairments caused by taxol plus platinum based chemotherapies in China. Due to the hepatic dependence of paclitaxel elimination, this pilot clinical study aimed to investigate the influence of MI on the pharmacokinetics of paclitaxel in epithelial ovarian cancer patients. During the standard chemotherapy of intravenous paclitaxel (125 mg/m(2) infused over a 3-h period) and intraperitoneal cisplatin (60 mg/m(2)) for patients with FIGO stage II epithelial ovarian cancer, 9 each of total 18 patients were respectively treated with intravenous MI (100 mg) or vehicle control for 4 days. Plasma paclitaxel was analyzed by HPLC and the pharmacokinetic parameters were calculated with non-compartmental analysis. The hematological, hepatic and renal status was monitored before and 3 days after paclitaxel administration. It was observed the terminal t 1/2 and MRT of paclitaxel were significantly (p = 0.002 and 0.001) reduced by MI, respectively, from 11.0 ± 2.2 and 5.6 ± 1.0 h to 7.7 ± 1.7 and 4.0 ± 0.3 h. Hematological toxicity indicated by platelet count and hepatic events marked with ALT, AST and γ-GT were significant in both groups. In spite of the insignificance of decreased system exposure of paclitaxel and recovered hepatic function by MI, they did correlate with each other. It was therefore deduced that the liver toxicities of paclitaxel plus cisplatin chemotherapy potentially decrease hepatic elimination and increase system exposure of paclitaxel, and the recovery of liver function by MI helps to restore hepatic clearance of paclitaxel. The clinical significance of this pharmacokinetic interaction requires further studies with larger population size.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Fígado/efeitos dos fármacos , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Área Sob a Curva , Carcinoma Epitelial do Ovário , Cromatografia Líquida de Alta Pressão , Cisplatino/administração & dosagem , Esquema de Medicação , Interações Medicamentosas , Feminino , Meia-Vida , Humanos , Infusões Intravenosas , Fígado/metabolismo , Taxa de Depuração Metabólica , Modelos Biológicos , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA