Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2216480120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791104

RESUMO

The photo-induced radiolysis of water is an elementary reaction in biology and chemistry, forming solvated electrons, OH radicals, and hydronium cations on fast time scales. Here, we use an optical-pump terahertz-probe spectroscopy setup to trigger the photoionization of water molecules with optical laser pulses at ~400 nm and then time-resolve the transient solvent response with broadband terahertz (THz) fields with a ~90 fs time resolution. We observe three distinct spectral responses. The first is a positive broadband mode that can be attributed to an initial diffuse, delocalized electron with a radius of (22 ± 1) Å, which is short lived (<200 fs) because the absorption is blue-shifting outside of the THz range. The second emerging spectroscopic signature with a lifetime of about 150 ps is attributed to an intermolecular mode associated with a mass rearrangement of solvent molecules due to charge separation of radicals and hydronium cations. After 0.2 ps, we observe a long-lasting THz signature with depleted intensity at 110 cm-1 that is well reproduced by ab initio molecular dynamics. We interpret this negative band at 110 cm-1 as the solvent cage characterized by a weakening of the hydrogen bond network in the first and second hydration shells of the cavity occupied by the localized electron.

2.
Chem Rev ; 123(22): 12431-12470, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37906708

RESUMO

Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.

3.
Nano Lett ; 24(26): 8055-8062, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904262

RESUMO

The unstable solid electrolyte interface (SEI) formed by uncontrollable electrolyte degradation, which leads to dendrite growth and Coulombic efficiency decay, hinders the development of Li metal anodes. A controllable desolvation process is essential for the formation of stable SEI and improved lithium metal deposition behavior. Here, we show a functional artificial interface protective layer comprised of chondroitin sulfate-reduced graphene oxide (CrG), on which polar functional groups are distributed to effectively reduce the energy barrier for desolvation of Li+ and effectively alienate solvent molecules to avoid solvent involvement in SEI formation, thus promoting the formation of a LiF-rich SEI. Consequently, stable Coulombic efficiencies of 98.4% were achieved after 500 cycles in a Li//Cu cell. Moreover, the LiFePO4 full cells achieve steady circulation (470 cycles at 80%, 1 C) with a negative/positive electrode capacity ratio of 2.87. Our multifunctional artificial interface protective layer provides a new way to advance Li metal batteries.

4.
Opt Express ; 32(6): 9433-9441, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571178

RESUMO

Sharp bends are crucial for large-scale and high-density photonics integration on thin-film lithium niobate platform. In this study, we demonstrate low-loss (<0.05 dB) and sharp bends (Reff = 30 µm) using free-form curves with a 200-nm-thick slab and a rib height of 200 nm on x-cut lithium niobate. Employing the same design method, we successfully realize a compact fully-etched ring resonator with a remarkably large free spectral range of 10.36 nm experimentally. Notably, the equivalent radius of the ring resonator is a mere 15 µm, with a loaded Q factor reaching 2.2 × 104.

5.
Opt Lett ; 49(18): 5019-5022, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270219

RESUMO

We present an electro-optic (EO) switch with ultralow DC drift on a thin-film lithium tantalate (TFLT) platform, even with SiO2 cladding and without post-annealing processes. The flat Vπ and EO responses have been measured across various driving frequencies, input optical powers, and temperatures. Stable optical switching is achievable in the low-frequency range. The experiment also demonstrated superior long-term stability (up to 2 h) compared to thin-film lithium niobate optical switches under similar on-chip optical power conditions (around -8 dBm).

6.
Opt Lett ; 49(15): 4409-4412, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090946

RESUMO

Thin-film lithium niobate (TFLN) is a promising integrated photonics platform but currently lacks a polarization-insensitive multimode interference (MMI) coupler, a crucial component for polarization-related optical communication applications such as polarization management, polarization-division multiplexing, and polarization-insensitive modulation systems. This paper presents a novel, to the best of our knowledge, approach by rotating the MMI structure on an anisotropic x-cut TFLN at specific angles to compensate for the difference in the beat length between the two polarizations. A polarization-insensitive 1 × 2 MMI coupler is experimentally achieved with measured transmittances of -2.5 to -4 dB for both output ports and polarization modes in the wavelength range of 1520-1580 nm.

7.
Angew Chem Int Ed Engl ; 63(37): e202408611, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924225

RESUMO

Controlled radical copolymerizations present attractive avenues to obtain polymers with complicated compositions and sequences. In this work, we report the development of a visible-light-driven organocatalyzed controlled copolymerization of fluoroalkenes and acyclic N-vinylamides for the first time. The approach enables the on-demand synthesis of a broad scope of amide-functionalized main-chain fluoropolymers via novel fluorinated thiocarbamates, facilitating regulations over chemical compositions and alternating fractions by rationally selecting comonomer pairs and ratios. This method allows temporally controlled chain-growth by external light, and maintains high chain-end fidelity that promotes facile preparation of block sequences. Notably, the obtained F/N hybrid polymers, upon hydrolysis, afford free amino-substituted fluoropolymers versatile for post modifications toward various functionalities (e.g., amide, sulfonamide, carbamide, thiocarbamide). We further demonstrate the in situ formation of polymer networks with desirable properties as protective layers on lithium metal anodes, presenting a promising avenue for advancing lithium metal batteries.

8.
Opt Express ; 31(2): 1354-1366, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785172

RESUMO

In this work, we propose and experimentally demonstrate a broadband polarization splitter-rotator (PSR) on the lithium niobate on insulator (LNOI). With multiple sequentially connected adiabatic tapers for waveguide mode conversion and directional coupling, the PSR shows a 160-nm bandwidth covering the C and L bands, an insertion loss of less than 2 dB, and an extinction ratio of more than 11 dB. Benefiting from the conversion-enhanced adiabatic tapers, the broadband device has a short length of 405 µm. Further optimization is performed to reduce the device length to 271 µm and comparable performances are achieved, demonstrating the feasibility of higher device compactness. The proposed design and principle can contribute to high-performance polarization management for integrated lithium niobate photonics.

9.
Opt Lett ; 48(5): 1264-1267, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857264

RESUMO

Directional couplers (DCs) are essential components in integrated photonics. A symmetric DC with a large fabrication tolerance on thin-film lithium niobate is demonstrated here. The principle is based on the beat length compensation of the opposite trend of width and gap fabrication errors in the DC. The tolerance is greater than ±100 nm for an optimized structure. The experimental results support the simulated ones. The principle can be applied to DC-based devices, such as 3-dB couplers and waveguide array couplers with a high yield.

10.
Opt Lett ; 48(15): 4145-4148, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527139

RESUMO

Fiber-to-chip coupling is an essential issue for taking high-performance integrated photonic devices into practical applications. On a thin-film lithium niobate platform, such a high-performance coupler featuring low loss, large bandwidth, and polarization independence is highly desired. However, the mode hybridization induced by the birefringence of lithium niobate seriously restricts a polarization-independent coupling. Here, we propose and experimentally demonstrate a high-performance and polarization-diversity cantilever edge coupler (EC) with the assistance of a two-stage polarization splitter and rotator (PSR). The fabricated cantilever EC shows a minimal coupling loss of 1.06 dB/facet, and the fully etched PSR structure shows a low insertion loss (IL) of -0.62 dB. The whole polarization-diversity cantilever EC exhibits a low IL of -2.17 dB and -1.68 dB for TE0 and TM0 mode, respectively, as well as a small cross talk of <-15 dB covering the wavelength band from 1.5 µm to 1.6 µm. A polarization-dependent loss <0.5 dB over the same wavelength band is also obtained. The proposed fiber-to-waveguide coupler, compatible with the fabrication process of popular thin-film lithium niobate photonic devices, can work as a coupling scheme for on-chip polarization-diversity applications.

11.
Opt Lett ; 48(6): 1434-1437, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946946

RESUMO

A metal-based one-dimensional grating coupler on an x-cut lithium-niobate-on-insulator wafer structure for a polarization-independent fiber interface is designed and demonstrated. By using a metal-based plasmonic mode, the diffractive angle for the two polarized modes in the lithium niobate ridge waveguide can be tuned to be the same. The polarization dependence of the grating coupler therefore can be effectively reduced. The fabricated device exhibits -3.56-dB and -4.08-dB peak coupling losses per coupler at 1573 nm for the TE and TM modes, respectively. The polarization-dependent losses are less than 0.69 dB in a 44-nm wavelength range. The demonstrated grating coupler can serve as a polarization-independent optical fiber interface on lithium-niobate-on-insulator and facilitate on-chip polarization diversity applications.

12.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570671

RESUMO

Phenanthrene (PHE), as a structurally simple, tricyclic, polycyclic aromatic hydrocarbon (PAHs), is widely present in marine environments and organisms, with serious ecological and health impacts. It is crucial to study fast and simple high-sensitivity detection methods for phenanthrene in seawater for the environment and the human body. In this paper, a immunosensor was prepared by using a multi-wall carbon nanotube (MWCNTs)-chitosan oligosaccharide (COS) nanocomposite membrane loaded with phenanthrene antibody. The principle was based on the antibody-antigen reaction in the immune reaction, using the strong electron transfer ability of multi-walled carbon nanotubes, coupled with chitosan oligosaccharides with an excellent film formation and biocompatibility, to amplify the detection signal. The content of the phenanthrene in seawater was studied via differential pulse voltammetry (DPV) using a potassium ferricyanide system as a redox probe. The antibody concentration, pH value, and probe concentration were optimized. Under the optimal experimental conditions, the response peak current of the phenanthrene was inversely proportional to the concentration of phenanthrene, in the range from 0.5 ng·mL-1 to 80 ng·mL-1, and the detection limit was 0.30 ng·mL-1. The immune sensor was successfully applied to the detection of phenanthrene in marine water, with a recovery rate of 96.1~101.5%, and provided a stable, sensitive, and accurate method for the real-time monitoring of marine environments.


Assuntos
Técnicas Biossensoriais , Quitosana , Nanopartículas Metálicas , Nanotubos de Carbono , Fenantrenos , Humanos , Nanotubos de Carbono/química , Quitosana/química , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Eletrodos , Anticorpos , Água do Mar , Oligossacarídeos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Ouro/química
13.
Angew Chem Int Ed Engl ; 62(48): e202310636, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37581580

RESUMO

In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.

14.
Opt Express ; 30(13): 22442-22451, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224942

RESUMO

We theoretically propose and experimentally demonstrate a novel ultra-compact four-mode silicon waveguide crossing device based on the asymmetric directional couplers for densely integrated on-chip mode division multiplexing systems. The crossing is based on the parallel crossing scheme where the two access waveguides are parallel to each other to have minimal area. The device utilizes an idle high order mode inside one bus waveguide to drop subsequently all the guided modes inside another bus waveguide, with the help of the asymmetric directional couplers (ADCs). We also optimize the structural parameters of these ADCs by using the particle swarm optimization method to obtain higher conversion efficiency and smaller coupling length. The simulation results show that the insertion losses of the input 1-8 ports are no more than 0.5 dB at the central wavelength of 1550 nm. And the crosstalks are less than -20 dB in the broadband from 1530 nm to 1580 nm with a footprint of only 25 × 70 µm2. Furthermore, our scheme can be easily extended to accommodate more modes by cascading more ADCs for mode dropping and crossing, without obviously deteriorating the performance and greatly increasing the overall footprint.

15.
Opt Express ; 30(20): 36394-36402, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258568

RESUMO

We experimentally demonstrate an integrated visible light modulator at 532 nm on the thin-film lithium niobate platform. The waveguides on such platform feature a propagation loss of 2.2 dB/mm while a grating for fiber interface has a coupling loss of 5 dB. Our fabricated modulator demonstrates a low voltage-length product of 1.1 V·cm and a large electro-optic bandwidth with a roll-off of -1.59 dB at 25 GHz for a length of 3.3 mm. This device offers a compact and large bandwidth solution to the challenge of integrated visible wavelength modulation in lithium niobate and paves the way for future small-form-factor integrated systems at visible wavelengths.

16.
Opt Express ; 30(14): 25308-25317, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237063

RESUMO

Electro-optic (EO) modulators with a high modulation bandwidth are indispensable parts of an optical interconnect system. A key requirement for an energy-efficient EO modulator is the low drive voltage, which can be provided using a standard complementary metal oxide semiconductor circuity without an amplifying driver. Thin-film lithium niobate has emerged as a new promising platform, and shown its capable of achieving driverless and high-speed EO modulators. In this paper, we report a compact high-performance modulator based on the thin-film lithium niobate platform on a silicon substrate. The periodic capacitively loaded travelling-wave electrode is employed to achieve a large modulation bandwidth and a low drive voltage, which can support a driverless single-lane 100Gbaud operation. The folded modulation section design also helps to reduce the device length by almost two thirds. The fabricated device represents a large EO bandwidth of 45GHz with a half-wave voltage of 0.7V. The driverless transmission of a 100Gbaud 4-level pulse amplitude modulation signal is demonstrated with a power consumption of 4.49fj/bit and a bit-error rate below the KP4 forward-error correction threshold of 2.4×10-4.

17.
Opt Lett ; 47(19): 5200-5203, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181221

RESUMO

A polarization splitter-rotator device can facilitate on-chip polarization-division multiplexing to enhance the transmission data rate. Here, we propose and experimentally demonstrate a polarization splitter-rotator based on adiabatic mode evolution on the thin-film lithium niobate platform. The measured results for a fabricated device show low insertion losses of <-0.5 dB and large extinction ratios of >20 dB over the 110-nm band. Large fabrication tolerance is also demonstrated with extinction ratios of >15 dB in the wavelength range of 1465-1630 nm for a waveguide width variation of 80 nm.

18.
Phys Chem Chem Phys ; 24(30): 18370-18392, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880712

RESUMO

In many alloy systems, the segregation and strengthening of the solute atoms are caused by mechanical and chemical contributions. To uncover the origins of segregation behaviors and strengthening behaviors of the solute atoms Cd, Si, Sc and Zr at (001)α-Al//(001)θ' and (010)α-Al//(010)θ' interfaces, first-principles calculations were conducted. Results show that the chemical contribution primarily dominates the oscillatory segregation behaviors of Cd, Si, Sc and Zr on the Al matrix side. The oscillatory segregation behaviors of Cd, Si, Sc and Zr on the θ' side are mainly governed by both chemical and mechanical contributions. The segregation tendency of Cd at the (001)α-Al//(001)θ' interface (or (010)α-Al//(010)θ' interface) throughout the platelets is small (or strong) because the charge accumulation between Cd and the host atoms is weak (or significant). The segregation trend of Sc (or Zr) on the Al matrix side at the (001)α-Al//(001)θ' and (010)α-Al//(010)θ' interfaces is strong, which is attributed to significant charge accumulation between Sc (or Zr) and the host atoms. Si exhibits a favorable segregation tendency on the θ' side at both the (001)α-Al//(001)θ' and (010)α-Al//(010)θ' interfaces, which is ascribed to significant charge accumulation between Si and the host atoms. With the increase of Si, Sc and Zr coverage, the segregation tendencies of Si, Sc and Zr enhance. The segregation tendency of Cd decreases with the increase of Cd coverage. The first-principles tensile test for the interface was conducted. The work of dislocation emission was computed. Results show that the strengthening effects of solute atoms on the interface are primarily dominated by the chemical contribution. Sc (or Zr) segregation leads to an increase in the strength of the interface, which is majorly attributed to a strong electronic interaction between Sc (or Zr) and the host atoms. Cd segregation causes a weakening effect on the interface because of the weak electronic interaction between Cd and the host atoms. The ductility of the (001)α-Al//(001)θ' interface with the Sc (or Zr) is more significant than that with the Cd (or Si). This work provides a strategy for improving the mechanical properties of the Al-Cu alloys.

19.
Eur Arch Otorhinolaryngol ; 279(3): 1341-1348, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34031750

RESUMO

PURPOSE: To report our experience using endoscopic intranasal incision reduction (EIIR) for nasal fractures and to assess effectiveness of the method. METHODS: 30 patients who underwent EIIR were retrospectively analysed. All the patients were examined by three-dimensional computed tomography (3D CT), acoustic rhinometry and rhinomanometry, preoperatively and postoperatively at 1 month. The visual analogue scale (VAS) was used to assess the preoperative aesthetics and nasal airflow satisfaction and at 1, 3 and 6 months postoperatively. VAS aesthetic satisfaction was also scored by two junior doctors. RESULTS: 3D CT showed that the fracture fragments fitted well in 30 patients postoperatively at 1 month. VAS aesthetics and nasal airflow scores were significantly improved postoperatively at 1, 3 and 6 months compared with preoperative scores (P < 0.01). The VAS aesthetic scores from the two surgeons were also significantly improved (P < 0.01). The minimal cross-sectional area increased from 0.39 ± 0.13 to 0.64 ± 0.13 (P < 0.001), the nasal volume increased from 4.65 ± 0.86 to 6.37 ± 0.94 (P < 0.001) and the total inspiratory airway resistance of the bilateral nasal cavity median decreased from 0.467 Pa/mL/s to 0.193 Pa/mL/s (P < 0.001). There were no technique-related intraoperative complications. CONCLUSION: EIIR was a practical choice, and the aesthetics and nasal airflow were significantly improved in patients with overlapped and displaced bone fragments, patients with fractures of the frontal process of the maxilla (FFPM), patients who underwent failed CR and patients beyond the optimal temporal window.


Assuntos
Obstrução Nasal , Rinometria Acústica , Endoscopia/métodos , Humanos , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/cirurgia , Obstrução Nasal/etiologia , Obstrução Nasal/cirurgia , Estudos Retrospectivos , Rinomanometria
20.
Ultraschall Med ; 43(2): e1-e10, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33910257

RESUMO

PURPOSE: To explore the usefulness of liver stiffness measurements (LSMs) by sound touch elastography (STE) and sound touch quantification (STQ) in chronic hepatitis B (CHB) patients for staging fibrosis. METHODS: This prospective multicenter study recruited normal volunteers and CHB patients between May 2018 and October 2019. The volunteers underwent LSM by STE and supersonic shear imaging (SSI) or by STQ and acoustic radiation force impulse imaging (ARFI). CHB patients underwent liver biopsy and LSM by both STE/STQ. The areas under the receiver operating characteristic curves (AUCs) for staging fibrosis were calculated. RESULTS: Overall, 97 volunteers and 524 CHB patients were finally eligible for the study. The successful STE and STQ measurement rates were both 100 % in volunteers and 99.4 % in CHB patients. The intraclass correlation coefficients (ICCs) for the intra-observer stability of STE and STQ (0.94; 0.90) were similar to those of SSI and ARFI (0.95; 0.87), respectively. STE and STQ showed better accuracy than the aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) (AUC: 0.87 vs 0.86 vs 0.73 vs 0.77) in staging cirrhosis. However, both STE and STQ were not superior to APRI and FIB-4 in staging significant fibrosis (AUC: 0.76 vs 0.73 vs 0.70 vs 0.71, all P-values > 0.05). CONCLUSION: STE and STQ are convenient techniques with a reliable LSM value. They have a similar diagnostic performance and are superior to serum biomarkers in staging cirrhosis in CHB patients.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatite B Crônica , Aspartato Aminotransferases , Biópsia , Técnicas de Imagem por Elasticidade/métodos , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico por imagem , Hepatite B Crônica/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Estudos Prospectivos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA