Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Nanomaterials (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38869582

RESUMO

The emergence of antibiotic-resistant bacteria necessitates the development of novel, sustainable, and biocompatible antibacterial agents. This study addresses cytotoxicity and environmental concerns associated with traditional silver nanoparticles (AgNPs) by exploring lignin, a readily available and renewable biopolymer, as a platform for AgNPs. We present a novel one-pot synthesis method for lignin-based AgNPs (AgNPs@AL) nanocomposites, achieving rapid synthesis within 5 min. This method utilizes various organic solvents, demonstrating remarkable adaptability to a wide range of lignin-dissolving systems. Characterization reveals uniform AgNP size distribution and morphology influenced by the chosen solvent. This adaptability suggests the potential for incorporating lignin-loaded antibacterial drugs alongside AgNPs, enabling combined therapy in a single nanocomposite. Antibacterial assays demonstrate exceptional efficacy against both Gram-negative and Gram-positive bacteria, with gamma-valerolactone (GVL)-assisted synthesized AgNPs exhibiting the most potent effect. Mechanistic studies suggest a combination of factors contributes to the antibacterial activity, including direct membrane damage caused by AgNPs and sustained silver ion release, ultimately leading to bacterial cell death. This work presents a straightforward, adaptable, and rapid approach for synthesizing biocompatible AgNPs@AL nanocomposites with outstanding antibacterial activity. These findings offer a promising and sustainable alternative to traditional antibiotics, contributing to the fight against antibiotic resistance while minimizing environmental impact.

3.
Int J Biol Macromol ; 277(Pt 3): 134471, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102905

RESUMO

Antibiotic resistance and the rise of untreatable bacterial infections pose severe threats to human health. Silver nanoparticles (AgNPs) have emerged as a promising antibacterial solution due to their broad-spectrum effectiveness. However, their relatively high cytotoxicity has limited their widespread application. In this study, ferulic acid (FA) was used as a reducing agent, while silver oxide served as a silver precursor to rapidly prepare FA-derived lignin (FAL) coated AgNPs (AgNPs@FAL) with a size ranging from 34.8 to 77.1 nm. Density functional theory (DFT) calculations indicated that the coating of FAL endowed AgNPs@FAL with high stability, preventing the oxidation of AgNPs prior to antibacterial applications. Cell experiments further indicated that AgNPs@FAL exhibited lower cell toxicity (∼80 % viability of normal kidney cells cultured at 25 µg/mL AgNPs@FAL) compared to fully exposed commercially available citrate-modified AgNPs (AgNPs@CA). Antibacterial experiments revealed that the minimum inhibitory concentrations (MIC) of AgNPs@FAL against E. coli and S. aureus were 12.5 µg/mL and 25 µg/mL, respectively, surpassing the antibacterial effect of AgNPs@CA, as well as ampicillin and penicillin. Additionally, AgNPs@FAL was capable of disrupting E. coli and S. aureus biofilm formation. This novel AgNPs@FAL formulation presents a promising antibacterial solution, addressing limitations observed in conventional drugs.

4.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607127

RESUMO

This study employs a combined computational and experimental approach to elucidate the mechanisms governing the interaction between lignin and urea, impacting lignin dissolution and subsequent aggregation behavior. Molecular dynamics (MD) simulations reveal how the urea concentration and temperature influence lignin conformation and interactions. Higher urea concentrations and temperatures promote lignin dispersion by disrupting intramolecular interactions and enhancing solvation. Density functional theory (DFT) calculations quantitatively assess the interaction energy between lignin and urea, supporting the findings from MD simulations. Anti-solvent precipitation demonstrates that increasing the urea concentration hinders the self-assembly of lignin nanoclusters. The findings provide valuable insights for optimizing lignin biorefinery processes by tailoring the urea concentration and temperature for efficient extraction and dispersion. Understanding the influence of urea on lignin behavior opens up avenues for designing novel lignin-based materials with tailored properties. This study highlights the potential for the synergetic application of MD simulations and DFT calculations to unravel complex material interactions at the atomic level.

5.
Front Public Health ; 12: 1364735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873319

RESUMO

Introduction: Osteoporosis is a prevalent challenge in clinical orthopedics, affecting a significant percentage of individuals aged 50 and above. The goal of this study was to comprehensively understand the relationships between a specialized dietary regimen and the risk of developing osteoporosis. Methods: This study employed extensive genome-wide association study (GWAS) summary statistics derived from the UK Biobank. It encompassed 8 kinds of special diets and 7 datasets pertaining to osteoporosis and associated symptoms. The principal analytical approach employed was the inverse-variance weighted method. Additionally, sensitivity analysis was employed to elucidate the diverse multiplicity patterns observed in the final model. Results: Our results showed that there is significant evidence that a gluten-free diet is associated with osteoporosis [odds ratio (OR): 1.080, 95% confidence interval (CI): 1.048-1.112, p = 4.23E-07)]. Furthermore, there exists a suggestive link between the three distinct dietary approaches and osteoporosis [(OR: 0.949, 95%CI: 0.929-0.970, p = 3.00E-06) for comprehensive consumption; (OR: 1.053, 95%CI: 1.018-1.089, p = 2.23E-03) for abstaining from wheat consumption; (OR: 1.036, 95%CI: 1.005-1.068, p = 1.97E-02) for abstaining from sugar consumption]. No additional correlation between the special dietary regimens and osteoporosis has been observed. Conclusion: Our research has uncovered a notable correlation between a gluten-free diet and the occurrence of osteoporosis. Furthermore, it exerts a promoting influence on the onset of osteoporosis, which stands in direct contradiction to the therapeutic principles for Celiac Disease's complications. As such, a novel association among these three elements is postulated.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoporose , Humanos , Osteoporose/epidemiologia , Reino Unido/epidemiologia , Incidência , Feminino , Masculino , Pessoa de Meia-Idade , Dieta Livre de Glúten/estatística & dados numéricos , Fatores de Risco , Idoso , Dieta/estatística & dados numéricos
6.
Int J Biol Macromol ; 274(Pt 2): 133186, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885858

RESUMO

Ligand-receptor recognition serves as the fundamental driving force for active targeting, yet it is still constrained by off-target effects. Herein, we demonstrate that circumventing or blocking the mononuclear phagocyte system (MPS) are both viable strategies to address off-target effects. Naturally derived lignin nanoparticles (LNPs) show great potential to block MPS due to its good stability, low toxicity, and degradability. We further demonstrate the impact of LNPs dosage on in vivo tumor targeting and antitumor efficacy. Our results show that a high dose of LNPs (300 mg/kg) leads to significant accumulation at the tumor site for a duration of 14 days after intravenous administration. In contrast, the low-dose counterparts (e.g., 50, 150 mg/kg) result in almost all LNPs accumulating in the liver. This discovery indicates that the liver is the primary site of LNP capture, leaving only the surplus LNPs the chance to reach the tumor. In addition, although cell membrane-engineered LNPs can rapidly penetrate tumors, they are still prone to capture by the liver during subsequent circulation in the bloodstream. Excitingly, comparable therapeutic efficacy is obtained for the above two strategies. Our findings may offer valuable insights into the targeted delivery of drugs for disease treatment.


Assuntos
Células de Kupffer , Lignina , Fígado , Nanopartículas , Fagocitose , Animais , Lignina/farmacologia , Lignina/química , Nanopartículas/química , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fagocitose/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
7.
ACS Nano ; 18(4): 3763-3774, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235647

RESUMO

Zinc sulfide is a promising high-capacity anode for practical sodium-ion batteries, considering its high capacity and the low cost of zinc and sulfur sources. However, the pulverization of particulate zinc sulfide causes active mass collapse and penetration-induced short circuits of batteries. Herein, a zinc sulfide encapsulated in a nitrogen-doped carbon shell (ZnS@NC) was developed for high-performance anodes. The confinement effect of nitrogen-doped carbon stabilizes the active mass structure during cycling thanks to the robust chemically and electronically bonded connections between nitrogen-doped carbon and zinc sulfide nanoparticles. Furthermore, the cycling stability of the ZnS@NC anode is boosted by the robust inorganic-rich solid electrolyte interphase (SEI) formed in cyclic and linear ether-based electrolytes. The ZnS@NC anode displayed a reversible specific capacity of 584 mAh g-1, an excellent rate capability of 327 mAh g-1 at 70 A g-1, and a highly stable cycling performance over 10000 cycles. This work provides a practical and promising approach to designing stable conversion anodes for high-performance sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA