Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Cancer ; 144(12): 3146-3159, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30536898

RESUMO

High-risk neuroblastoma, a predominantly TP53 wild-type (wt) tumour, is incurable in >50% patients supporting the use of MDM2 antagonists as novel therapeutics. Idasanutlin (RG7388) shows in vitro synergy with chemotherapies used to treat neuroblastoma. This is the first study to evaluate the in vivo efficacy of the intravenous idasanutlin prodrug, RO6839921 (RG7775), both alone and in combination with temozolomide in TP53 wt orthotopic neuroblastoma models. Detection of active idasanutlin using liquid chromatography-mass spectrometry and p53 pathway activation by ELISA assays and Western analysis showed peak plasma levels 1 h post-treatment with maximal p53 pathway activation 3-6 h post-treatment. RO6839921 and temozolomide, alone or in combination in mice implanted with TP53 wt SHSY5Y-Luc and NB1691-Luc cells showed that combined RO6839921 and temozolomide led to greater tumour growth inhibition and increase in survival compared to vehicle control. Overall, RO6839921 had a favourable pharmacokinetic profile consistent with intermittent dosing and was well tolerated alone and in combination. These preclinical studies support the further development of idasanutlin in combination with temozolomide in neuroblastoma in early phase clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Temozolomida/farmacologia , para-Aminobenzoatos/farmacologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pirrolidinas/farmacocinética , Distribuição Aleatória , Temozolomida/administração & dosagem , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , para-Aminobenzoatos/farmacocinética
2.
Pediatr Blood Cancer ; 61(9): 1711-3, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24803179

RESUMO

Neuroblastoma is an embryonal malignancy of the developing neural crest. Despite improvements in treatment, prognoses remain dire for patients with high-risk disease. Interest in this enigmatic cancer has led to a rapidly changing research landscape and we report on the recent advances in four themes that were discussed at the 3rd Neuroblastoma Research Symposium: (1) The epigenetic signature of neuroblastoma and the epigenetic control of tumour development, (2) novel approaches to targeting MYCN, (3) valuable in vivo modelling and (4) improving differentiation therapies based on a knowledge of normal sympathetic neuron development. Through lively discussion, the development of combined therapies with synergistic effects for which we have a good mechanistic understanding emerged as offering greatest promise. Drug synergies enhance efficacy but also specificity, the latter crucial for reducing long-term side effects in young children.


Assuntos
Pesquisa Biomédica , Congressos como Assunto , Neuroblastoma/terapia , Epigênese Genética , Humanos , Neuroblastoma/diagnóstico , Neuroblastoma/genética
3.
Clin Cancer Res ; 29(7): 1317-1331, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602782

RESUMO

PURPOSE: ALK-activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1%-2% of cases. Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK) inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single-agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data have suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. EXPERIMENTAL DESIGN: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin, and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX, lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSIONS: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma.


Assuntos
Neoplasias Pulmonares , Neuroblastoma , Camundongos , Animais , Humanos , Quinase do Linfoma Anaplásico/genética , Aminopiridinas/uso terapêutico , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
4.
Cancers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944835

RESUMO

Despite intensive high-dose multimodal therapy, high-risk neuroblastoma (NB) confers a less than 50% survival rate. This study investigates the role of replication stress in sensitivity to inhibition of Ataxia telangiectasia and Rad3-related (ATR) in pre-clinical models of high-risk NB. Amplification of the oncogene MYCN always imparts high-risk disease and occurs in 25% of all NB. Here, we show that MYCN-induced replication stress directly increases sensitivity to the ATR inhibitors VE-821 and AZD6738. PARP inhibition with Olaparib also results in replication stress and ATR activation, and sensitises NB cells to ATR inhibition independently of MYCN status, with synergistic levels of cell death seen in MYCN expressing ATR- and PARP-inhibited cells. Mechanistically, we demonstrate that ATR inhibition increases the number of persistent stalled and collapsed replication forks, exacerbating replication stress. It also abrogates S and G2 cell cycle checkpoints leading to death during mitosis in cells treated with an ATR inhibitor combined with PARP inhibition. In summary, increased replication stress through high MYCN expression, PARP inhibition or chemotherapeutic agents results in sensitivity to ATR inhibition. Our findings provide a mechanistic rationale for the inclusion of ATR and PARP inhibitors as a potential treatment strategy for high-risk NB.

5.
Cancers (Basel) ; 12(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354033

RESUMO

Background: High risk neuroblastoma (HR-NB) is one the most difficult childhood cancers to cure. These tumours frequently present with DNA damage response (DDR) defects including loss or mutation of key DDR genes, oncogene-induced replication stress (RS) and cell cycle checkpoint dysfunction. Aim: To identify biomarkers of sensitivity to inhibition of Ataxia telangiectasia and Rad3 related (ATR), a DNA damage sensor, and poly (ADP-ribose) polymerase (PARP), which is required for single strand break repair. We also hypothesise that combining ATR and PARP inhibition is synergistic. Methods: Single agent sensitivity to VE-821 (ATR inhibitor) and olaparib (PARP inhibitor), and the combination, was determined using cell proliferation and clonogenic assays, in HR-NB cell lines. Basal expression of DDR proteins, including ataxia telangiectasia mutated (ATM) and ATR, was assessed using Western blotting. CHK1S345 and H2AXS129 phosphorylation was assessed using Western blotting to determine ATR activity and RS, respectively. RS and homologous recombination repair (HRR) activity was also measured by γH2AX and Rad51 foci formation using immunofluorescence. Results: MYCN amplification and/or low ATM protein expression were associated with sensitivity to VE-821 (p < 0.05). VE-821 was synergistic with olaparib (CI value 0.04-0.89) independent of MYCN or ATM status. Olaparib increased H2AXS129 phosphorylation which was further increased by VE-821. Olaparib-induced Rad51 foci formation was reduced by VE-821 suggesting inhibition of HRR. Conclusion: RS associated with MYCN amplification, ATR loss or PARP inhibition increases sensitivity to the ATR inhibitor VE-821. These findings suggest a potential therapeutic strategy for the treatment of HR-NB.

6.
Front Oncol ; 10: 371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32309213

RESUMO

Despite intensive multimodal therapy, the survival rate for high risk neuroblastoma (HR-NB) remains <50%. Most cases initially respond to treatment but almost half will subsequently relapse with aggressive treatment resistant disease. Novel treatments exploiting the molecular pathology of NB and/or overcoming resistance to current genotoxic therapies are needed before survival rates can significantly improve. DNA damage response (DDR) defects are frequently observed in HR-NB including allelic deletion and loss of function mutations in key DDR genes, oncogene induced replication stress and cell cycle checkpoint dysfunction. Exploiting defects in the DDR has been a successful treatment strategy in some adult cancers. Here we review the genetic features of HR-NB which lead to DDR defects and the emerging molecular targeting agents to exploit them.

7.
Clin Cancer Res ; 26(1): 122-134, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767563

RESUMO

PURPOSE: Circulating tumor cells (CTCs) serve as noninvasive tumor biomarkers in many types of cancer. Our aim was to detect CTCs from patients with neuroblastoma for use as predictive and pharmacodynamic biomarkers. EXPERIMENTAL DESIGN: We collected matched blood and bone marrow samples from 40 patients with neuroblastoma to detect GD2 +/CD45- neuroblastoma CTCs from blood and disseminated tumor cells (DTCs) from bone marrow using the Imagestream Imaging flow cytometer (ISx). In six cases, circulating free DNA (cfDNA) extracted from plasma isolated from the CTC sample was analyzed by high-density single-nucleotide polymorphism (SNP) arrays. RESULTS: CTCs were detected in 26 of 42 blood samples (1-264/mL) and DTCs in 25 of 35 bone marrow samples (57-291,544/mL). Higher numbers of CTCs in patients with newly diagnosed, high-risk neuroblastoma correlated with failure to obtain a complete bone marrow (BM) metastatic response after induction chemotherapy (P < 0.01). Ex vivo Nutlin-3 (MDM2 inhibitor) treatment of blood and BM increased p53 and p21 expression in CTCs and DTCs compared with DMSO controls. In five of six cases, cfDNA analyzed by SNP arrays revealed copy number abnormalities associated with neuroblastoma. CONCLUSIONS: This is the first study to show that CTCs and DTCs are detectable in neuroblastoma using the ISx, with concurrently extracted cfDNA used for copy number profiling, and may be useful as pharmacodynamic biomarkers in early-phase clinical trials. Further investigation is required to determine whether CTC numbers are predictive biomarkers of BM response to first-line induction chemotherapy.


Assuntos
Biomarcadores Tumorais/sangue , Medula Óssea/patologia , Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Imidazóis/farmacologia , Células Neoplásicas Circulantes/patologia , Neuroblastoma/patologia , Piperazinas/farmacologia , Biomarcadores Tumorais/genética , Medula Óssea/efeitos dos fármacos , Variações do Número de Cópias de DNA , Humanos , Células Neoplásicas Circulantes/efeitos dos fármacos , Neuroblastoma/sangue , Neuroblastoma/tratamento farmacológico , Valor Preditivo dos Testes , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores
8.
Brain Behav ; 8(5): e00970, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29761019

RESUMO

Objectives: To assess the sleep quality of patients with Parkinson's disease (PD) and evaluate the effect of cardiopulmonary coupling (CPC) analysis on sleep quality and its correlation with subjective complaints in patients with PD. Methods: Our study included 42 patients with PD and 30 healthy controls. CPC analysis and the Pittsburgh Sleep Quality Index (PSQI) were used to evaluate the sleep quality of subjects. Results: High-frequency coupling (HFC) and sleep efficiency were significantly lower in the PD than in the control group, whereas very low-frequency coupling (VLFC) and sleep latency were significantly higher in the PD than in the control group. PSQI scores were significantly higher in the PD than in the control group (all p < .05). The PSQI score showed a negative correlation with the HFC ratio in the PD group (r = -.478, p = .001). Factors related to the occurrence of PD with poor sleep quality were the unified Parkinson's disease rating scale (UPDRS) score and nocturia. Conclusions: The sleep quality of patients with PD was generally decreased. CPC analysis can reflect the subjective sleep quality of patients with PD and serve as an effective sleep monitoring tool.


Assuntos
Doença de Parkinson/fisiopatologia , Sono , Idoso , Estudos de Casos e Controles , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Inquéritos e Questionários
9.
Int J Oncol ; 52(3): 967-977, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29393340

RESUMO

Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.


Assuntos
Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Camundongos , Camundongos Transgênicos , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Radiação Ionizante , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Compostos de Espiro/farmacologia , Proteína Supressora de Tumor p53/genética , para-Aminobenzoatos/farmacologia
10.
Parkinsons Dis ; 2018: 3201308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123489

RESUMO

BACKGROUND: Previous studies suggested that visual evoked potential (VEP) was impaired in patients with Parkinson's disease (PD), but the results were inconsistent. METHODS: We conducted a systematic review and meta-analysis to explore whether the VEP was significantly different between PD patients and healthy controls. Case-control studies of PD were selected through an electronic search of the databases PubMed, Embase, and the Cochrane Central Register of Controlled Trials. We calculated the pooled weighted mean differences (WMDs) and 95% confidence intervals (CIs) between individuals with PD and controls using the random-effects model. RESULTS: Twenty case-control studies which met our inclusion criteria were included in the final meta-analysis. We found that the P100 latency in PD was significantly higher compared with healthy controls (pooled WMD = 6.04, 95% CI: 2.73 to 9.35, P=0.0003, n=20). However, the difference in the mean amplitude of P100 was not significant between the two groups (pooled WMD = 0.64, 95% CI: -0.06 to 1.33, P=0.07) based on 10 studies with the P100 amplitude values available. CONCLUSIONS: The higher P100 latency of VEP was observed in PD patients, relative to healthy controls. Our findings suggest that electrophysiological changes and functional defect in the visual pathway of PD patients are important to our understanding of the pathophysiology of visual involvement in PD.

11.
Oncotarget ; 7(52): 87301-87311, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27888620

RESUMO

Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ~85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression.


Assuntos
Mutação , Neuroblastoma/genética , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Humanos , Repetições de Microssatélites , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/análise , Receptores Proteína Tirosina Quinases/antagonistas & inibidores
12.
Cancer Lett ; 363(1): 37-45, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25843293

RESUMO

SKP2 is the substrate recognition subunit of the ubiquitin ligase complex which targets p27(KIP1) for degradation. Induced at the G1/S transit of the cell cycle, SKP2 is frequently overexpressed in human cancers and contributes to malignancy. We previously identified SKP2 as a possible MYCN target gene and hence hypothesise that SKP2 is a potential therapeutic target in MYCN amplified disease. A positive correlation was identified between MYCN activity and SKP2 mRNA expression in Tet21N MYCN-regulatable cells and a panel of MYCN amplified and non-amplified neuroblastoma cell lines. In chromatin immunoprecipitation and reporter gene assays, MYCN bound directly to E-boxes within the SKP2 promoter and induced transcriptional activity which was decreased by the removal of MYCN and E-box mutation. Although SKP2 knockdown inhibited cell growth in both MYCN amplified and non-amplified cells, cell cycle arrest and apoptosis were induced only in non-MYCN amplified neuroblastoma cells. In conclusion these data identify SKP2 as a direct transcriptional target of MYCN and supports SKP2 as a potential therapeutic target in neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transcrição Gênica , Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Elementos E-Box , Pontos de Checagem da Fase G1 do Ciclo Celular , Genes Reporter , Humanos , Mutação , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Fatores de Tempo , Transfecção
13.
Oncotarget ; 6(12): 10207-21, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25844600

RESUMO

Neuroblastoma is a predominantly p53 wild-type (wt) tumour and MDM2-p53 antagonists offer a novel therapeutic strategy for neuroblastoma patients. RG7388 (Roche) is currently undergoing early phase clinical evaluation in adults. This study assessed the efficacy of RG7388 as a single-agent and in combination with chemotherapies currently used to treat neuroblastoma in a panel of neuroblastoma cell lines. RG7388 GI50 concentrations were determined in 21 p53-wt and mutant neuroblastoma cell lines of varying MYCN, MDM2 and p14(ARF) status, together with MYCN-regulatable Tet21N cells. The primary determinant of response was the presence of wt p53, and overall there was a >200-fold difference in RG7388 GI50 concentrations for p53-wt versus mutant cell lines. Tet21N MYCN+ cells were significantly more sensitive to RG7388 compared with MYCN- cells. Using median-effect analysis in 5 p53-wt neuroblastoma cell lines, selected combinations of RG7388 with cisplatin, doxorubicin, topotecan, temozolomide and busulfan were synergistic. Furthermore, combination treatments led to increased apoptosis, as evident by higher caspase-3/7 activity compared to either agent alone. These data show that RG7388 is highly potent against p53-wt neuroblastoma cells, and strongly supports its further evaluation as a novel therapy for patients with high-risk neuroblastoma and wt p53 to potentially improve survival and/or reduce toxicity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , para-Aminobenzoatos/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , para-Aminobenzoatos/administração & dosagem
14.
Front Oncol ; 2: 173, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226679

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.

15.
Cancer Res ; 70(4): 1377-88, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20145147

RESUMO

MYCN amplification occurs in approximately 25% of neuroblastomas, where it is associated with rapid tumor progression and poor prognosis. MYCN plays a paradoxical role in driving cellular proliferation and inducing apoptosis. Based on observations of nuclear p53 accumulation in neuroblastoma, we hypothesized that MYCN may regulate p53 in this setting. Immunohistochemical analysis of 82 neuroblastoma tumors showed an association of high p53 expression with MYCN expression and amplification. In a panel of 5 MYCN-amplified and 5 nonamplified neuroblastoma cell lines, and also in the Tet21N-regulatable MYCN expression system, we further documented a correlation between the expression of MYCN and p53. In MYCN-amplified neuroblastoma cell lines, MYCN knockdown decreased p53 expression. In Tet21N MYCN+ cells, higher levels of p53 transcription, mRNA, and protein were observed relative to Tet21N MYCN- cells. In chromatin immunoprecipitation and reporter gene assays, MYCN bound directly to a Myc E-Box DNA binding motif located close to the transcriptional start site within the p53 promoter, where it could initiate transcription. E-Box mutation decreased MYCN-driven transcriptional activation. Microarray analysis of Tet21N MYCN+/- cells identified several p53-regulated genes that were upregulated in the presence of MYCN, including MDM2 and PUMA, the levels of which were reduced by MYCN knockdown. We concluded that MYCN transcriptionally upregulates p53 in neuroblastoma and uses p53 to mediate a key mechanism of apoptosis.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Genes p53 , Neuroblastoma/genética , Proteínas Nucleares/fisiologia , Proteínas Oncogênicas/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/metabolismo , Amplificação de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Cancer Lett ; 293(2): 144-57, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20153925

RESUMO

The MYCN oncogene encodes a transcription factor which is amplified in up to 40% of high risk neuroblastomas. MYCN amplification is a well-established poor prognostic marker in neuroblastoma, however the role of MYCN expression and the mechanisms by which it acts to promote an aggressive phenotype remain largely unknown. This review discusses the current evidence identifying the direct and indirect downstream transcriptional targets of MYCN from recent studies, with particular reference to how MYCN affects the cell cycle, DNA damage response, differentiation and apoptosis in neuroblastoma.


Assuntos
Neoplasias Encefálicas/genética , Sistemas de Liberação de Medicamentos , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Fatores de Transcrição/genética , Apoptose/genética , Neoplasias Encefálicas/terapia , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulina G/uso terapêutico , Melfalan/uso terapêutico , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/terapia
17.
Cell Cycle ; 6(21): 2685-96, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17912039

RESUMO

Aberrant cytoplasmic sequestration has been reported as an alternative mechanism of p53 inactivation to mutation in neuroblastoma. We hypothesized that p53 localization and function in neuroblastoma is related to differentiation status. Eighty-two untreated and 24 paired pre and post-chemotherapy neuroblastomas were studied by immunocytochemistry for p53, p21(WAF1), BAX, Bcl2 and Ki67. Predominantly nuclear p53 was detected in undifferentiated neuroblastoma, and both nuclear and cytoplasmic p53 in differentiating neuroblastoma. The nuclear p53 labeling index (LI) correlated with the Ki67 LI (r = 0.51, p <0.001), and weakly with p21(WAF1) (r = 0.37), but not with BAX or Bcl2. There was a significant reduction in p53, p21(WAF1) and Ki67 LI after chemotherapy (p < 0.01), an increase in BAX (p <0.05), but no change in Bcl2. p53 localization and function were examined in two p53 wild-type undifferentiated and 9-cis retinoic acid differentiated neuroblastoma cell lines. Using immunocytochemistry, immunofluorescence and cell fractionation, p53 was found to be predominantly nuclear in both undifferentiated and differentiated cells. Following irradiation, there was upregulation of p53, p21(WAF1) and MDM2, but less induced PARP and caspase 3 cleavage in differentiated cells, suggesting intact p53 transcriptional function, but resistance to apoptosis. p53 function in undifferentiated and differentiated cells was confirmed by upregulation of p21(WAF1) and MDM2 following Nutlin-3 treatment. In conclusion, p53 is predominantly nuclear and functional in neuroblastoma regardless of differentiation status.


Assuntos
Diferenciação Celular/fisiologia , Núcleo Celular/fisiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Pré-Escolar , Humanos , Lactente , Neuroblastoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA