Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2208708119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191205

RESUMO

Photoperiod is an important environmental cue. Plants can distinguish the seasons and flower at the right time through sensing the photoperiod. Soybean is a sensitive short-day crop, and the timing of flowering varies greatly at different latitudes, thus affecting yields. Soybean cultivars in high latitudes adapt to the long day by the impairment of two phytochrome genes, PHYA3 and PHYA2, and the legume-specific flowering suppressor, E1. However, the regulating mechanism underlying phyA and E1 in soybean remains largely unknown. Here, we classified the regulation of the E1 family by phyA2 and phyA3 at the transcriptional and posttranscriptional levels, revealing that phyA2 and phyA3 regulate E1 by directly binding to LUX proteins, the critical component of the evening complex, to regulate the stability of LUX proteins. In addition, phyA2 and phyA3 can also directly associate with E1 and its homologs to stabilize the E1 proteins. Therefore, phyA homologs control the core flowering suppressor E1 at both the transcriptional and posttranscriptional levels, to double ensure the E1 activity. Thus, our results disclose a photoperiod flowering mechanism in plants by which the phytochrome A regulates LUX and E1 activity.


Assuntos
Fotoperíodo , Fitocromo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
2.
Mol Breed ; 41(6): 40, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37309444

RESUMO

Soybean (Glycine max (L.) Merrill) is an important legume crop worldwide. Plant height (PH) is a quantitative trait that is closely related to node number (NN) and internode length (IL) on the main stem, which together affect soybean yield. To identify candidate genes controlling these three traits in soybean, we examined a recombinant inbred line (RIL) population derived from a cross between two soybean varieties with semi-determinate stems (Dt1Dt1Dt2Dt2), JKK378 and HXW. A quantitative trait locus (QTL) named qPH18 was identified that simultaneously controls PH, NN, and IL; this region harbors the semi-determinant gene Dt2. Sequencing of the Dt2 promoter from JKK378 identified three polymorphisms relative to HXW, including two single nucleotide polymorphism (SNPs) and an 18-bp insertion/deletion polymorphism (Indel). Dt2 expression was lower in the qPH18JKK378 group than in the qPH18HXW group, whereas the expression level of the downstream gene Dt1 showed the opposite tendency. A transient transfection assay confirmed that Dt2 promoter activity is lower in JKK378 compared to HXW. We propose that the polymorphisms in the dominant Dt2 promoter underlie the differences in Dt2 expression and its downstream gene Dt1 in the two parents, thereby affecting PH, NN, IL, and grain weight per plant without altering stem growth habit. Compared to the PH18HXW allele, the qPH18JKK378 allele suppresses Dt2 expression, which releases the inhibition of Dt1 expression, thus enhancing NN and grain yield. Our findings shed light on the mechanism underlying NN and PH in soybean and provide a molecular marker to facilitate breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01235-y.

3.
J Integr Plant Biol ; 63(6): 1004-1020, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33458938

RESUMO

Flowering time and stem growth habit determine inflorescence architecture in soybean, which in turn influences seed yield. Dt1, a homolog of Arabidopsis TERMINAL FLOWER 1 (TFL1), is a major controller of stem growth habit, but its underlying molecular mechanisms remain unclear. Here, we demonstrate that Dt1 affects node number and plant height, as well as flowering time, in soybean under long-day conditions. The bZIP transcription factor FDc1 physically interacts with Dt1, and the FDc1-Dt1 complex directly represses the expression of APETALA1 (AP1). We propose that FT5a inhibits Dt1 activity via a competitive interaction with FDc1 and directly upregulates AP1. Moreover, AP1 represses Dt1 expression by directly binding to the Dt1 promoter, suggesting that AP1 and Dt1 form a suppressive regulatory feedback loop to determine the fate of the shoot apical meristem. These findings provide novel insights into the roles of Dt1 and FT5a in controlling the stem growth habit and flowering time in soybean, which determine the adaptability and grain yield of this important crop.


Assuntos
Glycine max/metabolismo , Glycine max/fisiologia , Meristema/metabolismo , Meristema/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/genética , Flores/metabolismo , Flores/fisiologia , Hábitos , Meristema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA