Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(12): 4874-4890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35944000

RESUMO

Creating 3D shapes from 2D drawings is an important problem with applications in content creation for computer animation and virtual reality. We introduce a new sketch-based system, CreatureShop, that enables amateurs to create high-quality textured 3D character models from 2D drawings with ease and efficiency. CreatureShop takes an input bitmap drawing of a character (such as an animal or other creature), depicted from an arbitrary descriptive pose and viewpoint, and creates a 3D shape with plausible geometric details and textures from a small number of user annotations on the 2D drawing. Our key contributions are a novel oblique view modeling method, a set of systematic approaches for producing plausible textures on the invisible or occluded parts of the 3D character (as viewed from the direction of the input drawing), and a user-friendly interactive system. We validate our system and methods by creating numerous 3D characters from various drawings, and compare our results with related works to show the advantages of our method. We perform a user study to evaluate the usability of our system, which demonstrates that our system is a practical and efficient approach to create fully-textured 3D character models for novice users.

2.
IEEE Trans Med Imaging ; 41(7): 1791-1801, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130151

RESUMO

Detecting 3D landmarks on cone-beam computed tomography (CBCT) is crucial to assessing and quantifying the anatomical abnormalities in 3D cephalometric analysis. However, the current methods are time-consuming and suffer from large biases in landmark localization, leading to unreliable diagnosis results. In this work, we propose a novel Structure-Aware Long Short-Term Memory framework (SA-LSTM) for efficient and accurate 3D landmark detection. To reduce the computational burden, SA-LSTM is designed in two stages. It first locates the coarse landmarks via heatmap regression on a down-sampled CBCT volume and then progressively refines landmarks by attentive offset regression using multi-resolution cropped patches. To boost accuracy, SA-LSTM captures global-local dependence among the cropping patches via self-attention. Specifically, a novel graph attention module implicitly encodes the landmark's global structure to rationalize the predicted position. Moreover, a novel attention-gated module recursively filters irrelevant local features and maintains high-confident local predictions for aggregating the final result. Experiments conducted on an in-house dataset and a public dataset show that our method outperforms state-of-the-art methods, achieving 1.64 mm and 2.37 mm average errors, respectively. Furthermore, our method is very efficient, taking only 0.5 seconds for inferring the whole CBCT volume of resolution 768×768×576 .


Assuntos
Pontos de Referência Anatômicos , Memória de Curto Prazo , Cefalometria/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes
3.
IEEE Trans Med Imaging ; 40(12): 3604-3616, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34161240

RESUMO

Performance degradation due to domain shift remains a major challenge in medical image analysis. Unsupervised domain adaptation that transfers knowledge learned from the source domain with ground truth labels to the target domain without any annotation is the mainstream solution to resolve this issue. In this paper, we present a novel unsupervised domain adaptation framework for cross-modality cardiac segmentation, by explicitly capturing a common cardiac structure embedded across different modalities to guide cardiac segmentation. In particular, we first extract a set of 3D landmarks, in a self-supervised manner, to represent the cardiac structure of different modalities. The high-level structure information is then combined with another complementary feature, the Canny edges, to produce accurate cardiac segmentation results both in the source and target domains. We extensively evaluate our method on the MICCAI 2017 MM-WHS dataset for cardiac segmentation. The evaluation, comparison and comprehensive ablation studies demonstrate that our approach achieves satisfactory segmentation results and outperforms state-of-the-art unsupervised domain adaptation methods by a significant margin.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Coração/diagnóstico por imagem
4.
Med Image Anal ; 69: 101949, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387908

RESUMO

Automatic and accurate segmentation of dental models is a fundamental task in computer-aided dentistry. Previous methods can achieve satisfactory segmentation results on normal dental models; however, they fail to robustly handle challenging clinical cases such as dental models with missing, crowding, or misaligned teeth before orthodontic treatments. In this paper, we propose a novel end-to-end learning-based method, called TSegNet, for robust and efficient tooth segmentation on 3D scanned point cloud data of dental models. Our algorithm detects all the teeth using a distance-aware tooth centroid voting scheme in the first stage, which ensures the accurate localization of tooth objects even with irregular positions on abnormal dental models. Then, a confidence-aware cascade segmentation module in the second stage is designed to segment each individual tooth and resolve ambiguities caused by aforementioned challenging cases. We evaluated our method on a large-scale real-world dataset consisting of dental models scanned before or after orthodontic treatments. Extensive evaluations, ablation studies and comparisons demonstrate that our method can generate accurate tooth labels robustly in various challenging cases and significantly outperforms state-of-the-art approaches by 6.5% of Dice Coefficient, 3.0% of F1 score in term of accuracy, while achieving 20 times speedup of computational time.


Assuntos
Modelos Dentários , Dente , Algoritmos , Dente/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA