Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 577(7791): 531-536, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942070

RESUMO

The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory1,2. Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16-27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6+ and HOPX+ hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16-20 are similar to those of the mouse at postnatal days 0-5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1+ cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Hipocampo/embriologia , Animais , Proteínas de Transporte/metabolismo , Giro Denteado/citologia , Giro Denteado/embriologia , Giro Denteado/metabolismo , Evolução Molecular , Feminino , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Especificidade da Espécie , Transcriptoma/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(45): e2211228119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322742

RESUMO

Magnetic targeting is one of the most promising approaches for improving the targeting efficiency by which magnetic drug carriers are directed using external magnetic fields to reach their targets. As a natural magnetic nanoparticle (MNP) of biological origin, the magnetosome is a special "organelle" formed by biomineralization in magnetotactic bacteria (MTB) and is essential for MTB magnetic navigation to respond to geomagnetic fields. The magnetic targeting of magnetosomes, however, can be hindered by the aggregation and precipitation of magnetosomes in water and biological fluid environments due to the strong magnetic attraction between particles. In this study, we constructed a magnetosome-like nanoreactor by introducing MTB Mms6 protein into a reverse micelle system. MNPs synthesized by thermal decomposition exhibit the same crystal morphology and magnetism (high saturation magnetization and low coercivity) as natural magnetosomes but have a smaller particle size. The DSPE-mPEG-coated magnetosome-like MNPs exhibit good monodispersion, penetrating the lesion area of a tumor mouse model to achieve magnetic enrichment by an order of magnitude more than in the control groups, demonstrating great prospects for biomedical magnetic targeting applications.


Assuntos
Magnetossomos , Magnetospirillum , Nanopartículas , Neoplasias , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Magnetossomos/química , Bactérias Gram-Negativas/metabolismo , Nanopartículas/química , Campos Magnéticos , Neoplasias/metabolismo , Magnetospirillum/metabolismo
3.
Anal Chem ; 95(30): 11542-11549, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37485962

RESUMO

The isolation and enrichment efficiency of SARS-CoV-2 virus in complex biological environments is often relatively low, presenting challenges in direct detection and an increased risk of false negatives, particularly during the early stages of infection. To address this issue, we have developed a novel approach using ultrasmall magnetosome-like nanoparticles (≤10 nm) synthesized via biomimetic mineralization of the Mms6 protein derived from magnetotactic bacteria. These nanoparticles are surface-functionalized with hydrophilic carboxylated polyethylene glycol (mPEG2000-COOH) to enhance water solubility and monodispersity. Subsequently, they are coupled with antibodies targeting the receptor-binding domain (RBD) of the virus. The resulting magnetosome-like immunomagnetic beads (Mal-IMBs) exhibit high magnetic responsiveness comparable to commercial magnetic beads, with a saturation magnetization of 90.6 emu/g. Moreover, their smaller particle size provides a significant advantage by offering a higher specific surface area, allowing for a greater number of RBD single-chain fragment variable (RBD-scFv) antibodies to be coupled, thereby enhancing immune capture ability and efficiency. To validate the practicality of Mal-IMBs, we evaluated their performance in recognizing the RBD antigens, achieving a maximum capture ability of 83 µg/mg per unit mass. Furthermore, we demonstrated the binding capability of Mal-IMBs to SARS-CoV-2 pseudovirus using fluorescence microscopy. The Mal-IMBs effectively enriched the pseudovirus at a low copy concentration of 70 copies/mL. Overall, the small Mal-IMB exhibited excellent magnetic responsiveness and binding efficiency. By employing a multisite virus binding mechanism, it significantly improves the enrichment and separation of SARS-CoV-2 in complex environments, facilitating rapid detection of COVID-19 and contributing to effective measures against its spread.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Separação Imunomagnética/métodos , Ligação Proteica , Fenômenos Magnéticos , Anticorpos Antivirais
4.
PLoS Biol ; 18(5): e3000705, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32401820

RESUMO

Modeling the processes of neuronal progenitor proliferation and differentiation to produce mature cortical neuron subtypes is essential for the study of human brain development and the search for potential cell therapies. We demonstrated a novel paradigm for the generation of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a vascular structure for over 200 days as a vascularized and functional brain organoid model. The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated the presence of chemical and electrical synapses in vOrganoids. More importantly, single-cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the construction of functional human-mouse blood vessels in the grafts that promoted cell survival in the grafts. This vOrganoid culture method could not only serve as a model to study human cortical development and explore brain disease pathology but also provide potential prospects for new cell therapies for nervous system disorders and injury.


Assuntos
Técnicas de Cultura de Células , Neurogênese , Organoides/irrigação sanguínea , Telencéfalo/embriologia , Animais , Células-Tronco Embrionárias , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/metabolismo , Organoides/transplante
5.
J Transl Med ; 20(1): 10, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980134

RESUMO

BACKGROUND: Birth defects are responsible for approximately 7% of neonatal deaths worldwide by World Health Organization in 2004. Many methods have been utilized for examining the congenital anomalies in fetuses. This study aims to investigate the efficiency of simultaneous CNV-seq and whole-exome sequencing (WES) in the diagnosis of fetal anomaly based on a large Chinese cohort. METHODS: In this cohort study, 1800 pregnant women with singleton fetus in Hubei Province were recruited from 2018 to 2020 for prenatal ultrasonic screening. Those with fetal structural anomalies were transferred to the Maternal and Child Health Hospital of Hubei Province through a referral network in Hubei, China. After multidisciplinary consultation and decision on fetal outcome, products of conception (POC) samples were obtained. Simultaneous CNV-seq and WES was conducted to identify the fetal anomalies that can compress initial DNA and turnaround time of reports. RESULTS: In total, 959 couples were finally eligible for the enrollment. A total of 227 trios were identified with a causative alteration (CNV or variant), among which 191 (84.14%) were de novo. Double diagnosis of pathogenic CNVs and variants have been identified in 10 fetuses. The diagnostic yield of multisystem anomalies was significantly higher than single system anomalies (32.28% vs. 22.36%, P = 0.0183). The diagnostic rate of fetuses with consistent intra- and extra-uterine phenotypes (172/684) was significantly higher than the rate of these with inconsistent phenotypes (17/116, P = 0.0130). CONCLUSIONS: Simultaneous CNV-seq and WES analysis contributed to fetal anomaly diagnosis and played a vital role in elucidating complex anomalies with compound causes.


Assuntos
Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal , Estudos de Coortes , Feminino , Feto , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal/métodos , Sequenciamento do Exoma/métodos
6.
Cereb Cortex ; 29(9): 3864-3878, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30307495

RESUMO

Cajal-Retzius (CR) cells are one of the earliest populations of neurons in the cerebral cortex of rodents and primates, and they play a critical role in corticogenesis and cortical lamination during neocortical development. However, a comprehensive morphological and physiological profile of CR cells in the mouse neocortex has not yet been established. Here, we systematically investigated the dynamic development of CR cells in Tg(Ebf2-EGFP)58Gsat/Mmcd mice. The morphological complexity, membrane activities and presynaptic inputs of CR cells coordinately increase and reach a plateau at P5-P9 before regressing. Using 3D reconstruction, we delineated a parallel-stratification pattern of the axonal extension of CR cells. Furthermore, we found that the morphological structure and presynaptic inputs of CR cells were disturbed in Reelin-deficient mice. These findings confirm that CR cells undergo a transient maturation process in layer 1 before disappearing. Importantly, Reelin deficiency impairs the formation of synaptic connections onto CR cells. In conclusion, our results provide insights into the rapid maturation and axonal stratification of CR cells in layer 1. These findings suggest that both the electrophysiological activities and the morphology of CR cells provide vital guidance for the modulation of early circuits, in a Reelin-dependent manner.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/fisiologia , Proteínas de Fluorescência Verde/análise , Potenciais da Membrana , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia
7.
Neurobiol Dis ; 130: 104486, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150793

RESUMO

Accumulated genetic evidences indicate that the contactin associated protein-like (CNTNAP) family is implicated in autism spectrum disorders (ASD). In this study, we identified genetic mutations in the CNTNAP3 gene from Chinese Han ASD cohorts and Simons Simplex Collections. We found that CNTNAP3 interacted with synaptic adhesion proteins Neuroligin1 and Neuroligin2, as well as scaffolding proteins PSD95 and Gephyrin. Significantly, we found that CNTNAP3 played an opposite role in controlling the development of excitatory and inhibitory synapses in vitro and in vivo, in which ASD mutants exhibited loss-of-function effects. In this study, we showed that the male Cntnap3-null mice exhibited deficits in social interaction, spatial learning and prominent repetitive behaviors. These evidences elucidate the pivotal role of CNTNAP3 in synapse development and social behaviors, providing mechanistic insights into ASD.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Comportamento Social , Animais , Comportamento Animal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Sinapses
8.
Adv Healthc Mater ; 12(11): e2202620, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622654

RESUMO

Implant-associated infection and inflammation are the main causes of implant failure, causing irreversible damage and significantly increasing clinical risks and economic losses. In this study, a 3D multifunctional architecture is constructed that consisted of hierarchical TiO2 nanotubes (NTs) and electrospun polyvinylidene fluoride nanofiber layers on the surface of a titanium implant. The movement of bacteria through the nanofiber layer is facilitated by its appropriate pore sizes and electrostatic interactions to reach the NT layer where the bacteria are killed by positive charge traps. In contrast, the macrophages tend to adhere to the nanofiber layer. The mechanical interactions between the macrophages and piezoelectric nanofibers generate a self-stimulated electric field that regulated an anti-inflammatory phenotype. This study provides a new method for multifunctional implant materials with antibacterial, piezoelectrically self-stimulated anti-inflammatory, and osteointegration properties that are driven by electrical stimulation.


Assuntos
Autoestimulação , Titânio , Titânio/farmacologia , Propriedades de Superfície , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Osseointegração
9.
Int J Biol Macromol ; 253(Pt 3): 126973, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729988

RESUMO

Ferritin possesses a stable and uniform cage structure, along with tumor-targeting properties and excellent biocompatibility, making it a promising drug delivery vehicle. However, the current ferritin drug loading strategy involves complex steps and harsh reaction conditions, resulting in low yield and recovery of drug loading, which limits the clinical application prospects of ferritin nanomedicine. In this study, we utilized the high-efficiency heat-sensitivity of the multiple channel switch structures of the E-helix-cut ferritin mutant (Ecut-HFn) and Cu2+ assistance to achieve high-efficiency loading of chemotherapeutic drugs in a one-step process at low temperatures. This method features mild reaction conditions (45 °C), high loading efficiency (about 110 doxorubicin (Dox) per Ecut-HFn), and improved protein and Dox recovery rates (with protein recovery rate around 94 % and Dox recovery rate reaching up to 45 %). The prepared ferritin-Dox particles (Ecut-HFn-Cu-Dox) exhibit a uniform size distribution, good stability, and retain the natural tumor targeting ability of ferritin. Overall, this temperature-controlled drug loading strategy utilizing heat-sensitivity ferritin mutants is energy-saving, environmentally friendly, efficient, and easy to operate, offering a new perspective for scaling up the industrial production of ferritin drug carriers.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Ferritinas/genética , Ferritinas/química , Temperatura Alta , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química
10.
Sci China Life Sci ; 66(8): 1841-1857, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929272

RESUMO

Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.


Assuntos
Deficiências de Ferro , Proteínas Ferro-Enxofre , Espécies Reativas de Oxigênio , Animais , Camundongos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Nanoscale ; 15(6): 2911-2923, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36692007

RESUMO

The improvement of Ag nanoparticles (AgNPs), in particular, loaded titania nanotubes, includes not only the antibacterial effect but also balancing the side effects from the antibacterial effect and osteogenesis properties, which can lead to an increased success rate of implants. Herein, based on the various needs of the graft to inhibit bacteria at different stages in vivo, we used a special osteogenic honeycomb-like "large tube over small tube" double-layered nanotube structure and created ultra-small-sized silver nanoparticles uniformly loaded on the surface and the interior of double-layer nanotubes by an optimized sputter coating method to ensure the time-dependent controllable release of antibacterial Ag ions from grafts and achieve the balance of the antibacterial effect and osteogenesis properties. The release of Ag+ from DNT-Ag8 was determined by inductively coupled plasma spectrometry. The release rate of Ag was slow; it was 30% on the first day and plateaued by the 19th day. Porphyromonas gingivalis adhesion and live bacteria were less abundant on the surface of DNT-Ag8, reaching an antibacterial efficiency of 55.6% in vitro. DNT-Ag8 shows a significantly higher antibacterial effect in a rat model infected with Staphylococcus aureus. An in vitro study demonstrated that DNT-Ag8 had no adverse effects on the adhesion, viability, proliferation, ALP staining, or activity assays of rat BMSCs. In contrast, it increased the expression of osteogenic genes. In vivo, DNT-Ag8 promoted bone-implant osseointegration in a beagle mandibular tooth loss model. This study demonstrated that the uniform loading of small-diameter silver nanoparticles using a honeycomb bilayer nanotube template structure is a promising method for modifying titanium surfaces to improve both bacteriostasis and osseointegration.


Assuntos
Nanopartículas Metálicas , Nanotubos , Cães , Ratos , Animais , Osteogênese , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Osseointegração , Antibacterianos/farmacologia , Antibacterianos/química , Titânio/farmacologia , Titânio/química , Nanotubos/química , Propriedades de Superfície
12.
Front Bioeng Biotechnol ; 10: 841591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284418

RESUMO

Nest-like nanofiber structures have potential applications in surface modifications of titanium implants. In this study, nest-like nanofiber structures were prepared on a titanium surface at room temperature and pressure by using the nanobowl template-assisted method combined with alkali etching. The characterization and biocompatibility of this material were analyzed by cellular adhesion, death, CCK-8, ALP, and RT-PCR assays in vitro, and osseointegration was evaluated by micro-CT and fluorescent labeling in vivo. The results showed that this nest-like nanofiber structure has a firmer and asperate surface than nanotubes, which leads to better cellular adhesion, proliferation, and differentiation capacity. In a beagle alveolar bone implant model, the nest-like nanofiber structure showed a better osseointegration capacity. In conclusion, this nest-like nanofiber structure has potential applications in dental implantology.

13.
Mol Genet Genomic Med ; 10(6): e1943, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388601

RESUMO

BACKGROUND: Mitochondrial disease (MD) is genetically a heterogeneous group of disorders with impairment in respiratory chain complexes or pathways associated with the mitochondrial function. Nowadays, it is still a challenge for the genetic screening of MD due to heteroplasmy of mitochondrial genome and the complex model of inheritance. This study was designed to investigate the feasibility of whole exome sequencing (WES)-based testing as an alternative option for the diagnosis of MD. METHODS: A Chinese Han cohort of 48 patients with suspect MD features was tested using nanoWES, which was a self-designed WES technique that covered the complete mtDNA genome and 21,019 nuclear genes. Fourteen patients were identified with a single genetic variant and three with single deletion in mtDNA. RESULTS: The heteroplasmy levels of variants in mitochondrial genome range from 11% to 100%. NanoWES failed to identify multiple deletions in mtDNA compared with long range PCR and massively parallel sequencing (LR-PCR/MPS). However, our testing showed obvious advantages in identifying variations in nuclear DNA. Based on nanoWES, we identified two patients with nuclear DNA variation. One of them showed Xp22.33-q28 duplication, which indicated a possibility of Klinefelter syndrome. CONCLUSION: NanoWES yielded a diagnostic rate of 35.4% for MD. With the rapid advances of next generation sequencing technique and decrease in cost, we recommend the usage of nanoWES as a first-line method in clinical diagnosis.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma
14.
Autophagy ; 16(4): 615-625, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31238825

RESUMO

Macroautophagy/autophagy functions as a quality control mechanism by degrading misfolded proteins and damaged organelles and plays an essential role in maintaining neural homeostasis. The phosphoinositide phosphatidylinositol-3-phosphate (PtdIns3P) effector Atg18 is essential for autophagosome formation in yeast. Mammalian cells contain four Atg18 homologs, belonging to two subclasses, WIPI1 (WD repeat domain, phosphoinositide interacting 1), WIPI2 and WDR45B/WIPI3 (WD repeat domain 45B), WDR45/WIPI4. The role of Wdr45b in autophagy and in neural homeostasis, however, remains unknown. Recent human genetic studies have revealed a potential causative role of WDR45B in intellectual disability. Here we demonstrated that mice deficient in Wdr45b exhibit motor deficits and learning and memory defects. Histological analysis reveals that wdr45b knockout (KO) mice exhibit a large number of swollen axons and show cerebellar atrophy. SQSTM1- and ubiquitin-positive aggregates, which are autophagy substrates, accumulate in various brain regions in wdr45b KO mice. Double KO mice, wdr45b and wdr45, die within one day after birth and exhibit more severe autophagy defects than either of the single KO mice, suggesting that these two genes act cooperatively in autophagy. Our studies demonstrated that WDR45B is critical for neural homeostasis in mice. The wdr45b KO mice provide a model to study the pathogenesis of intellectual disability.Abbreviations: ACSF: artificial cerebrospinal fluid; AMC: aminomethylcoumarin; BPAN: beta-propeller protein-associated neurodegeneration; CALB1: calbindin 1; CNS: central nervous system; DCN: deep cerebellar nuclei; fEPSP: field excitatory postsynaptic potential; IC: internal capsule; ID: intellectual disability; ISH: in situ hybridization; KO: knockout; LTP: long-term potentiation; MBP: myelin basic protein; MGP: medial globus pallidus; PtdIns3P: phosphoinositide phosphatidylinositol-3-phosphate; WDR45B: WD repeat domain 45B; WIPI1: WD repeat domain, phosphoinositide interacting 1; WT: wild type.


Assuntos
Autofagia/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cognição/fisiologia , Aprendizagem/fisiologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Homeostase/fisiologia , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo
15.
Sci Bull (Beijing) ; 65(14): 1192-1202, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659149

RESUMO

Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects in MECP2 transgenic (MECP2-TG) mice remain unknown. To observe neural activity of MECP2-TG mice in vivo, we performed calcium imaging by implantation of microendoscope in the hippocampal CA1 regions of MECP2-TG and wild type (WT) mice. We identified neurons whose activities were tightly associated with social interaction, which activity patterns were compromised in MECP2-TG mice. Strikingly, we rescued the social-related neural activity in CA1 and social defects in MECP2-TG mice by deleting the human MECP2 transgene using the CRISPR/Cas9 method during adulthood. Our data points to the neural circuitry responsible for social interactions and provides potential therapeutic targets for autism in adulthood.

16.
Nat Commun ; 11(1): 4063, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792525

RESUMO

The neuroendocrine hypothalamus is the central regulator of vital physiological homeostasis and behavior. However, the cellular and molecular properties of hypothalamic neural progenitors remain unexplored. Here, hypothalamic radial glial (hRG) and hypothalamic mantle zone radial glial (hmRG) cells are found to be neural progenitors in the developing mammalian hypothalamus. The hmRG cells originate from hRG cells and produce neurons. During the early development of hypothalamus, neurogenesis occurs in radial columns and is initiated from hRG cells. The radial glial fibers are oriented toward the locations of hypothalamic subregions which act as a scaffold for neuronal migration. Furthermore, we use single-cell RNA sequencing to reveal progenitor subtypes in human developing hypothalamus and characterize specific progenitor genes, such as TTYH1, HMGA2, and FAM107A. We also demonstrate that HMGA2 is involved in E2F1 pathway, regulating the proliferation of progenitor cells by targeting on the downstream MYBL2. Different neuronal subtypes start to differentiate and express specific genes of hypothalamic nucleus at gestational week 10. Finally, we reveal the developmental conservation of nuclear structures and marker genes in mouse and human hypothalamus. Our identification of cellular and molecular properties of neural progenitors provides a basic understanding of neurogenesis and regional formation of the non-laminated hypothalamus.


Assuntos
Hipotálamo/citologia , Hipotálamo/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Análise por Conglomerados , Feminino , Genes Supressores de Tumor , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Hibridização In Situ , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez
17.
Sci Adv ; 6(34): eaaz2978, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923614

RESUMO

Neurogenesis processes differ in different areas of the cortex in many species, including humans. Here, we performed single-cell transcriptome profiling of the four cortical lobes and pons during human embryonic and fetal development. We identified distinct subtypes of neural progenitor cells (NPCs) and their molecular signatures, including a group of previously unidentified transient NPCs. We specified the neurogenesis path and molecular regulations of the human deep-layer, upper-layer, and mature neurons. Neurons showed clear spatial and temporal distinctions, while glial cells of different origins showed development patterns similar to those of mice, and we captured the developmental trajectory of oligodendrocyte lineage cells until the human mid-fetal stage. Additionally, we verified region-specific characteristics of neurons in the cortex, including their distinct electrophysiological features. With systematic single-cell analysis, we decoded human neuronal development in temporal and spatial dimensions from GW7 to GW28, offering deeper insights into the molecular regulations underlying human neurogenesis and cortical development.


Assuntos
Células-Tronco Neurais , Análise de Célula Única , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Córtex Cerebral , Perfilação da Expressão Gênica , Humanos , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Transcriptoma
18.
Stem Cell Reports ; 13(5): 862-876, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31631018

RESUMO

Recent studies have demonstrated that human astrocytes and fibroblasts can be directly converted into functional neurons by small molecules. However, fibroblasts, as a potentially better cell resource for transplantation, are not as easy to reprogram as astrocytes regarding their fate to neurons, and chemically induced neurons (iNs) with low efficiency from fibroblasts resulted in limited application for the treatment of neurological disorders, including depression. Here, we report that human fibroblasts can be efficiently and directly reprogrammed into glutamatergic neuron-like cells by serially exposing cells to a combination of small molecules. These iNs displayed neuronal transcriptional networks, and also exhibited mature firing patterns and formed functional synapses. Importantly, iNs could integrate into local circuits after transplantation into postnatal mouse brain. Our study provides a rapid and efficient transgene-free approach for chemically generating neuron-like cells from human fibroblasts. Furthermore, our approach offers strategies for disease modeling and drug discovery in central nervous system disorders.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Fibroblastos/citologia , Neurogênese , Neurônios/citologia , Animais , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos SCID , Neurogênese/efeitos dos fármacos , Neurônios/transplante , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA