Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2321606121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513106

RESUMO

Eukaryotic cells form condensates to sense and adapt to their environment [S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017), H. Yoo, C. Triandafillou, D. A. Drummond, J. Biol. Chem. 294, 7151-7159 (2019)]. Poly(A)-binding protein (Pab1), a canonical stress granule marker, condenses upon heat shock or starvation, promoting adaptation [J. A. Riback et al., Cell 168, 1028-1040.e19 (2017)]. The molecular basis of condensation has remained elusive due to a dearth of techniques to probe structure directly in condensates. We apply hydrogen-deuterium exchange/mass spectrometry to investigate the mechanism of Pab1's condensation. Pab1's four RNA recognition motifs (RRMs) undergo different levels of partial unfolding upon condensation, and the changes are similar for thermal and pH stresses. Although structural heterogeneity is observed, the ability of MS to describe populations allows us to identify which regions contribute to the condensate's interaction network. Our data yield a picture of Pab1's stress-triggered condensation, which we term sequential activation (Fig. 1A), wherein each RRM becomes activated at a temperature where it partially unfolds and associates with other likewise activated RRMs to form the condensate. Subsequent association is dictated more by the underlying free energy surface than specific interactions, an effect we refer to as thermodynamic specificity. Our study represents an advance for elucidating the interactions that drive condensation. Furthermore, our findings demonstrate how condensation can use thermodynamic specificity to perform an acute response to multiple stresses, a potentially general mechanism for stress-responsive proteins.


Assuntos
Proteínas de Choque Térmico , Proteínas de Ligação a Poli(A) , Proteínas de Ligação a Poli(A)/genética , Temperatura , Proteínas de Choque Térmico/metabolismo , Termodinâmica , Resposta ao Choque Térmico , Medição da Troca de Deutério/métodos
2.
Nucleic Acids Res ; 51(15): 7882-7899, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37427792

RESUMO

Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.


Assuntos
Histonas , Nucleossomos , Trypanosoma brucei brucei , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Trypanosoma brucei brucei/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34413192

RESUMO

The dynamics and folding of potassium channel pore domain monomers are connected to the kinetics of tetramer assembly. In all-atom molecular dynamics simulations of Kv1.2 and KcsA channels, monomers adopt multiple nonnative conformations while the three helices remain folded. Consistent with this picture, NMR studies also find the monomers to be dynamic and structurally heterogeneous. However, a KcsA construct with a disulfide bridge engineered between the two transmembrane helices has an NMR spectrum with well-dispersed peaks, suggesting that the monomer can be locked into a native-like conformation that is similar to that observed in the folded tetramer. During tetramerization, fluoresence resonance energy transfer (FRET) data indicate that monomers rapidly oligomerize upon insertion into liposomes, likely forming a protein-dense region. Folding within this region occurs along separate fast and slow routes, with τfold ∼40 and 1,500 s, respectively. In contrast, constructs bearing the disulfide bond mainly fold via the faster pathway, suggesting that maintaining the transmembrane helices in their native orientation reduces misfolding. Interestingly, folding is concentration independent despite the tetrameric nature of the channel, indicating that the rate-limiting step is unimolecular and occurs after monomer association in the protein-dense region. We propose that the rapid formation of protein-dense regions may help with the assembly of multimeric membrane proteins by bringing together the nascent components prior to assembly. Finally, despite its name, the addition of KcsA's C-terminal "tetramerization" domain does not hasten the kinetics of tetramerization.


Assuntos
Canal de Potássio Kv1.2/química , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular
4.
Adv Mater ; 36(7): e2307129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820719

RESUMO

In recent years, DNA has emerged as a fascinating building material to engineer hydrogel due to its excellent programmability, which has gained considerable attention in biomedical applications. Understanding the structure-property relationship and underlying molecular determinants of DNA hydrogel is essential to precisely tailor its macroscopic properties at molecular level. In this review, the rational design principles of DNA molecular networks based on molecular dynamics of polymers on the temporal scale, which can be engineered via the backbone rigidity and crosslinking kinetics, are highlighted. By elucidating the underlying molecular mechanisms and theories, it is aimed to provide a comprehensive overview of how the tunable DNA backbone rigidity and the crosslinking kinetics lead to desirable macroscopic properties of DNA hydrogels, including mechanical properties, diffusive permeability, swelling behaviors, and dynamic features. Furthermore, it is also discussed how the tunable macroscopic properties make DNA hydrogels promising candidates for biomedical applications, such as cell culture, tissue engineering, bio-sensing, and drug delivery.


Assuntos
Hidrogéis , Polímeros , Simulação de Dinâmica Molecular , Engenharia Tecidual , DNA
5.
World J Clin Cases ; 11(8): 1788-1793, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36970010

RESUMO

BACKGROUND: Combined hamartoma of the retina and retinal pigment epithelium (CHRRPE) is a rare congenital benign tumor which is commonly monocular. Typical CHRRPE comprises slightly raised lesions at the posterior pole, with proliferation membrane often leading to vascular distortion. In severe cases, macular edema, macular hole, retinal detachment or vitreous hemorrhage may occur. Patients with atypical clinical manifestations are prone to misdiagnosis by inexperienced ophthalmologists. CASE SUMMARY: A 33-year-old man reported onset of right eye blurred vision for one week prior. Anterior segment and intraocular pressure were normal in both eyes. Left eye fundus photography was normal. Right eye ophthalmoscopy showed vitreous hemorrhage and off-white raised retinal lesions below the optic disc. Proliferative membranes on the lesion surfaces resulted in superficial retinal detachment and tortuosity and occlusion of peripheral blood vessels. A horseshoe-like tear in the temporal periphery was surrounded by retinal detachment. Optical coherence tomography revealed retinal thickening at the focal site with structural disturbance indicated by high reflectance. Right eye ultrasound showed retinal thickening at the lesion, stretching and uplifting of the proliferative membrane, with moderately patchy echo at the optic disc edge. Cytokines and antibodies were detected in vitreous fluids during the operation to rule out other diseases. Fundus fluorescein angiography (FFA) at postoperative follow-up led to final diagnosis of CHRRPE. CONCLUSION: FFA is helpful in diagnosing retinal and retinal pigment epithelial combined hamartoma. In addition, other cytokine and etiological tests facilitate further differential diagnosis to rule out other suspected diseases.

6.
ACS Macro Lett ; 12(6): 745-750, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37207332

RESUMO

Nebulized lipid nanoparticles (LNPs) have been considered as potential therapies for genetic disease as well as infectious disease. However, the sensitivity of LNPs to high shear stress during the nebulization process results in loss of the integrity of the nanostructure and the capability of delivering active pharmaceutical ingredients. Herein we have provided a fast extrusion method to prepare liposomes incorporated with a DNA hydrogel (hydrogel-LNPs) to improve the stability of the LNPs. Taking advantage of the good cellular uptake efficiency, we also demonstrated the potential of hydrogel-LNPs in delivering small molecular doxorubicin (Dox) and nucleic acid drugs. This work provides not only highly biocompatible hydrogel-LNPs for aerosol delivery, but also a strategy to regulate the elasticity of LNPs, which will benefit the potential optimization of drug delivery carriers.


Assuntos
Lipossomos , Nanopartículas , Hidrogéis , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Nanopartículas/química , DNA
7.
Carbohydr Polym ; 310: 120703, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925240

RESUMO

Supramolecular hydrogels exhibit promising potential in biological and clinical fields due to their special dynamic properties. However, most existing supramolecular hydrogels suffer from poor mechanical strength, which severely limits their applications. Here in this study, the Kinetically Interlocking Multiple-Units (KIMU) strategy was applied to the hyaluronan networks by introducing different supramolecular interaction motifs in an organized and alternative manner. Our strategy successfully elevated the energy barrier of crosslinker dissociation to 103.0 kJ mol-1 and increased the storage modulus of hydrogels by 78 % with the intrinsic dynamic properties preserved. It can be expected that this method would bring a convenient and effective route to fabricate novel supramolecular materials with excellent mechanical properties.

8.
Fitoterapia ; 162: 105291, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36064154

RESUMO

Oleanolic acid and its derivatives have been widely reported for their antitumor activities. Recently, the introduction of a triphenylphosphonium cation moiety has been described to improve the selectivity and cytotoxicity of pentacyclic triterpenoids by targeting the mitochondria of human cancer cells. In this work, a series of novel mitochondria-targeting oleanolic acid derivatives were synthesized and their antitumor activities assessed. The majority of the compounds are more cytotoxicity to cancer cells than normal cells, especially for 6c with IC50 of 0.81 µM in A549 cells, which showed a slight increase compared to doxorubicin (0.97 µM). Mechanism studies demonstrated that 6c induced apoptosis of A549 cells in a dose-dependent manner, and reactive oxygen species production, mitochondrial membrane potential depolarization, and particularly pro-apoptotic proteins upregulated by western blotting experiment may be responsible for the results. Moreover, 6c arrested the cell cycle at G2/M phase and cell migration in A549 cells. Compound 6c had a comparable or somewhat improved activity to the positive control LY294002 in molecular docking studies and in vitro testing, demonstrating that the apoptosis mechanism may involve inhibition of the PI3K-Akt pathway. These results augur well for the use of 6c as a novel triphenylphosphonium-conjugated anticancer agent.


Assuntos
Antineoplásicos , Ácido Oleanólico , Antineoplásicos/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácido Oleanólico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
ACS Omega ; 3(3): 3599-3607, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458611

RESUMO

Graphene-enhanced polymer matrix nanocomposites are attracting ever increasing attention in the electromagnetic (EM) interference (EMI) shielding field because of their improved electrical property. Normally, the graphene is introduced into the matrix by chemical functionalization strategy. Unfortunately, the electrical conductivity of the nanocomposite is weak because the graphene nanosheets are not interconnected. As a result, the electromagnetic interference shielding effectiveness of the nanocomposite is not as excellent as expected. Interconnected graphene network shows very good electrical conduction property, thus demonstrates excellent electromagnetic interference shielding effectiveness. However, its brittleness greatly limits its real application. Here, we propose to directly infiltrate flexible poly(dimethylsiloxane) (PDMS) into interconnected reduced graphene network and form nanocomposite. The nanocomposite is superflexible, light weight, enhanced mechanical and improved electrical conductive. The nanocomposite is so superflexible that it could be tied as spring-like sucker. Only 1.07 wt % graphene significantly increases the tensile strengths by 64% as compared to neat PDMS. When the graphene weight percent is 3.07 wt %, the nanocomposite has the more excellent electrical conductivity up to 103 S/m, thus more outstanding EMI shielding effectiveness of around 54 dB in the X-band are achieved, which means that 99.999% EM has been shielded by this nanocomposite. Bluetooth communication testing with and without our nanocomposite confirms that our flexible nanocomposite has very excellent shielding effect. This flexible nanocomposite is very promising in the application of wearable devices, as electromagnetic interference shielding shelter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA