Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470195

RESUMO

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Assuntos
Amicacina , Peptídeos Cíclicos , Infecções por Pseudomonas , Animais , Camundongos , Amicacina/farmacologia , Pseudomonas aeruginosa , Potenciais da Membrana , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
2.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478112

RESUMO

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Assuntos
Ciprofloxacina , Klebsiella pneumoniae , Humanos , Ciprofloxacina/farmacologia , Klebsiella pneumoniae/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Testes de Sensibilidade Microbiana
3.
Arch Microbiol ; 206(8): 350, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995446

RESUMO

KKL-35 is a new oxadiazole compound with potent broad-spectrum antibacterial activity against a number of gram-positive and gram-negative bacteria. However, its influences on bacterial growth are unclear. This study is to investigate phenotypic changes of Staphylococcus aureus (SA) caused by KKL-35 and evaluate antibacterial activity of combinations of KKL-35 with 7 class of antibiotics available in medical facilities. KKL-35-treated SA showed significantly lower survival under stresses of NaCl and H2O2 than DMSO (21.03 ± 2.60% vs. 68.21 ± 5.31% for NaCl, 4.91 ± 3.14% vs. 74.78 ± 2.88% for H2O2). UV exposure significantly decreased survival of SA treated with KKL-35 than DMSO-treated ones (23.91 ± 0.71% vs. 55.45 ± 4.70% for 4.2 J/m2, 12.80 ± 1.03% vs. 31.99 ± 5.99% for 7.0 J/m2, 1.52 ± 0.63% vs. 6.49 ± 0.51% for 14.0 J/m2). KKL-35 significantly decreased biofilm formation (0.47 ± 0.12 vs. 1.45 ± 0.21) and bacterial survival in the serum resistance assay (42.27 ± 2.77% vs. 78.31 ± 5.64%) than DMSO. KKL-35 significantly decreased ethidium bromide uptake and efflux, as well as the cell membrane integrity. KKL-35 had low cytotoxicity and low propensity for resistance. KKL-35 inhibited SA growth in concentration-independent and time-dependent manners, and showed additivity when combined with the majority class of available antibiotics. Antibiotic combinations of KKL-35 with ciprofloxacin, rifampicin, or linezolid significantly decreased bacterial loads than the most active antibiotic in the corresponding combination. Thus, KKL-35 inhibits growth of SA by decreasing bacterial environmental adaptations, biofilm formation, membrane uptake and efflux, as well as increasing antibiotic sensitivity. Its potent antibacterial activity, low cytotoxicity, low propensity for resistance, and wide choices in antibiotic combinations make KKL-35 a promising leading compound to design new antibiotics in monotherapies and combination therapies to treat bacterial infections.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Oxidiazóis , Staphylococcus aureus , Humanos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Oxidiazóis/farmacologia , Fenótipo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA