Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(18): 7186-7194, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37103881

RESUMO

The emergence of the coronavirus disease 2019 (COVID-19) pandemic prompted researchers to develop portable biosensing platforms, anticipating to detect the analyte in a label-free, direct, and simple manner, for deploying on site to prevent the spread of the infectious disease. Herein, we developed a facile wavelength-based SPR sensor built with the aid of a 3D printing technology and synthesized air-stable NIR-emitting perovskite nanocomposites as the light source. The simple synthesis processes for the perovskite quantum dots enabled low-cost and large-area production and good emission stability. The integration of the two technologies enabled the proposed SPR sensor to exhibit the characteristics of lightweight, compactness, and being without a plug, just fitting the requirements of on-site detection. Experimentally, the detection limit of the proposed NIR SPR biosensor for refractive index change reached the 10-6 RIU level, comparable with that of state-of-the-art portable SPR sensors. In addition, the bio-applicability of the platform was validated by incorporating a homemade high-affinity polyclonal antibody toward the SARS-CoV-2 spike protein. The results demonstrated that the proposed system was capable of discriminating between clinical swab samples collected from COVID-19 patients and healthy subjects because the used polyclonal antibody exhibited high specificity against SARS-CoV-2. Most importantly, the whole measurement process not only took less than 15 min but also needed no complex procedures or multiple reagents. We believe that the findings disclosed in this work can open an avenue in the field of on-site detection for highly pathogenic viruses.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanocompostos , Humanos , Ressonância de Plasmônio de Superfície/métodos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biossensoriais/métodos , Anticorpos
2.
Materials (Basel) ; 17(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793447

RESUMO

In this study, lead(II) sulphide (PbS) nanoparticles of varying particle sizes were synthesized using the hot injection method, employing 1-octadecene (ODE) as a coordinating ligand in conjunction with oleylamine (OAm). This synthesis approach was compared with the preparation of hexagonal-shaped nanoparticles through the ligand of 1-Dodecanethiol (DT), resulting in DT-capped PbS nanoparticles. The prepared nanoparticles were characterized using multiple techniques including photoluminescence (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The condensation reaction of DT ligands led to various nanoparticles within the range of 34.87 nm to 35.87 nm across different synthesis temperatures (120 °C, 150 °C, 180 °C, 210 °C, and 240 °C). The PbS with DT ligands exhibited a highly crystalline and superhydrophilic structure. Interestingly, near-infrared (NIR)-PL analysis revealed peaks at 1100 nm, representing the lowest-energy excitonic absorption peak of PbS nanoparticles for both ligands. This suggests their potential utility in various applications, including IR photoreactors, as well as in the development of non-toxic nanoparticles for potential applications in in vivo bioimaging.

3.
Materials (Basel) ; 16(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687753

RESUMO

Perovskite quantum dots (QDs) have showed excellent optoelectronic properties to extend the application range of novel solid-state lighting, such as perovskite QD based LEDs (QD-LEDs). However, the traditional device structure of perovskite QD-LEDs employed PEDOT:PSS as a hole inject layer (HIL), which impairs stability due to acidic surface characteristics. This study proposes the sputtered NiO films as an HIL to replace acidic PEDOT:PSS. The NiO films with significantly different characteristics were prepared by controlling the sputtering parameters to investigate the devices' performance of NiO-based CsPbBr3 QD-LEDs. The optimized device showed an excellent performance with maxima luminescence of 20,118 cd/m2 and an external quantum efficiency (EQE) up to 3.63%.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432243

RESUMO

In this study, blue perovskite quantum dots (PQDs) were prepared using didodecyldimethylammonium bromide (DDAB), which can passivate surface defects caused by the loss of surface ligands and reduce particle size distribution. After the passivation of DDAB, blue CsPbClxBr3-x PQDs dispersed in n-octane produced a more compact and uniform PQD thin film than the non-passivated ones. The resulting device showed a stabile lifetime, and an EL peak of 470 nm and a maximum EQE of 1.63% were obtained at an operating voltage of 2.6 V and a current density of 0.34 mA/cm2. This work aims to provide a simple method to prepare blue-emitting PQDs and high-performance PQD-based light-emitting devices.

5.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556708

RESUMO

Perovskite CsPbI3 quantum dots (QDs) were synthesized as a hole-transporting layer (HTL) of a planar perovskite solar cell (PSC). By using the Octam solution during the ligand engineering, CsPbI3 QDs exhibits a denser grain and a larger grain size due to the short-chain ligands of Octam. In addition, CsPbI3 QDs with the Octam solution showed a smooth and uniform surface on MAPbI3 film, indicating the QDs improved the microstructure of the MAPbI3 perovskite film. As a result, the PSC with CsPbI3 QDs as an HTL has the optimal open-circuit voltage as 1.09 V, the short-circuit current as 20.5 mA/cm2, and the fill factor (FF) as 75.7%, and the power conversion efficiency (PCE) as 17.0%. Hence, it is inferred that introducing QDs as a HTL via the ligand engineering can effectively improve the device performance of the PSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA