Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109650, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788912

RESUMO

Nectins are adhesion molecules that play a crucial role in the organization of epithelial and endothelial junctions and function as receptors for the entry of herpes simplex virus. However, the role of Nectin4 remains poorly understood in fish. In this study, nectin4 gene was cloned from medaka (OlNectin4). OlNectin4 was located on chromosome 18 and contained 11 exons, with a total genome length of 25754 bp, coding sequences of 1689 bp, coding 562 amino acids and a molecular weight of 65.5 kDa. OlNectin4 contained four regions, including an Immunoglobulin region, an Immunoglobulin C-2 Type region, a Transmembrane region and a Coiled coil region. OlNectin4 shared 47.18 % and 25.00 % identity to Paralichthys olivaceus and Mus musculus, respectively. In adult medaka, the transcript of nectin4 was predominantly detected in gill. During red spotted grouper nervous necrosis virus (RGNNV) infection, overexpression of OlNectin4 in GE cells significantly increased viral gene transcriptions. Meanwhile, Two mutants named OlNectin4△4 (+4 bp) and OlNectin4△7 (-7 bp) medaka were established using CRISPR-Cas9 system. Nectin4-KO medaka had higher mortality than WT after infected with RGNNV. Moreover, the expression of RGNNV RNA2 gene in different tissues of the Nectin4-KO were higher than WT medaka after challenged with RGNNV. The brain and eye of Nectin4-KO medaka which RGNNV mainly enriched, exhibited significantly higher expression of interferon signaling genes than in WT. Taken together, the OlNectin4 plays a complex role against RGNNV infection by inducing interferon responses for viral clearance.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Nectinas , Nodaviridae , Oryzias , Infecções por Vírus de RNA , Animais , Oryzias/genética , Oryzias/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Nectinas/genética , Nectinas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Filogenia , Sequência de Aminoácidos , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária
2.
Funct Integr Genomics ; 23(2): 168, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204625

RESUMO

pax6 is a canonic master gene for eye formation. Knockout of pax6 affects the development of craniofacial skeleton and eye in mice. Whether pax6 affects the development of spinal bone has not been reported yet. In the present study, we used CRISPR/Cas9 system to generate Olpax6.1 mutant in Japanese medaka. Phenotype analysis showed that ocular mutation caused by the Olpax6.1 mutation occurred in the homozygous mutant. The phenotype of heterozygotes is not significantly different from that of wild-type. In addition, knockout Olpax6.1 resulted in severe curvature of the spine in the homozygous F2 generation. Comparative transcriptome analysis and qRT-PCR revealed that the defective Olpax6.1 protein caused a decrease in the expression level of sp7, col10a1a, and bglap, while the expression level of xylt2 did not change significantly. The functional enrichment of differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes database showed that the DEGs between Olpax6.1 mutation and wild-type were enriched in p53 signaling pathway, extracellular matrix (ECM) -receptor interaction, et al. Our results indicated that the defective Olpax6.1 protein results in the reduction of sp7 expression level and the activation of p53 signaling pathway, which leads to a decrease in the expression of genes encoding ECM protein, such as collagen protein family and bone gamma-carboxyglutamate protein, which further inhibits bone development. Based on the phenotype and molecular mechanism of ocular mutation and spinal curvature induced by Olpax6.1 knockout, we believe that the Olpax6.1-/- mutant could be a potential model for the study of spondylo-ocular syndrome.


Assuntos
Oryzias , Animais , Camundongos , Oryzias/genética , Oryzias/metabolismo , Camundongos Knockout , Proteína Supressora de Tumor p53/genética , Mutação
3.
Environ Sci Technol ; 57(45): 17620-17628, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902719

RESUMO

Despite decades of research on phenols oxidation by permanganate, there are still considerable uncertainties regarding the mechanisms accounting for the unexpected parabolic pH-dependent oxidation rate. Herein, the pH effect on phenols oxidation was reinvestigated experimentally and theoretically by highlighting the previously unappreciated proton transfer. The results revealed that the oxidation of protonated phenols occurred via proton-coupled electron transfer (PCET) pathways, which can switch from ETPT (electron transfer followed by proton transfer) to CEPT (concerted electron-proton transfer) or PTET (proton transfer followed by electron transfer) with an increase in pH. A PCET-based model was thus established, and it could fit the kinetic data of phenols oxidation by permanganate well. In contrast with what was previously thought, both the simulating results and the density functional theory calculation indicated the rate of CEPT reaction of protonated phenols with OH- as the proton acceptor was much higher than that of deprotonated phenols, which could account for the pH-rate profiles for phenols oxidation. Analysis of the quantitative structure-activity relationships among the modeled rate constants, Hammett constants, and pKa values of phenols further supports the idea that the oxidation of protonated phenols is dominated by PCET. This study improves our understanding of permanganate oxidation and suggests a new pattern of reactivity that may be applicable to other systems.


Assuntos
Elétrons , Prótons , Concentração de Íons de Hidrogênio , Oxirredução , Transporte de Elétrons , Fenóis , Cinética
4.
Angew Chem Int Ed Engl ; 62(40): e202310138, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37590086

RESUMO

The selective oxygenation of ubiquitous C(sp3 )-H bonds remains a highly sought-after method in both academia and the chemical industry for constructing functionalized organic molecules. However, it is extremely challenging to selectively oxidize a certain C(sp3 )-H bond to afford alcohols due to the presence of multiple C(sp3 )-H bonds with similar strength and steric environment in organic molecules, and the alcohol products being prone to further oxidation. Herein, we present a practical and cost-efficient electrochemical method for the highly selective monooxygenation of benzylic C(sp3 )-H bonds using continuous flow reactors. The electrochemical reactions produce trifluoroacetate esters that are resistant to further oxidation but undergo facile hydrolysis during aqueous workup to form benzylic alcohols. The method exhibits a broad scope and exceptional site selectivity and requires no catalysts or chemical oxidants. Furthermore, the electrochemical method demonstrates excellent scalability by producing 115 g of one of the alcohol products. The high site selectivity of the electrochemical method originates from its unique mechanism to cleave benzylic C(sp3 )-H bonds through sequential electron/proton transfer, rather than the commonly employed hydrogen atom transfer (HAT).

5.
Environ Sci Technol ; 56(14): 10372-10380, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35795970

RESUMO

Although periodate-based advanced oxidation processes have been proven to be efficient in abating organic contaminants, the activation properties of different periodate species remain largely unclear. Herein, by highlighting the role of H4IO6-, we reinvestigated the pH effect on the decontamination performance of the H2O2/periodate process. Results revealed that elevating pH from 2.0 to 10.0 could markedly accelerate the rates of organic contaminant decay but decrease the amounts of organic contaminant removal. This pH-dependent trend of organic contaminant degradation corresponded well with the HO· yield and the variation of periodate species. Specifically, although 1O2 could be detected at pH 9.0, HO· was determined to be the major reactive oxidizing species in the H2O2/periodate process under all the tested pH levels. Furthermore, it was suggested that only H4IO6- and H2I2O104- could serve as the precursors of HO·. The second-order rate constant for the reaction of H2I2O104- species with H2O2 was determined to be ∼1199.5 M-1 s-1 at pH 9.0, which was two orders of magnitude greater than that of H4IO6- (∼2.2 M-1 s-1 at pH 3.0). Taken together, the reaction pathways of H2O2 with different periodate species were proposed. These fundamental findings could improve our understanding of the periodate-based advanced oxidation processes.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Ácido Periódico , Raios Ultravioleta , Poluentes Químicos da Água/química
6.
J Fish Biol ; 96(2): 418-426, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31755106

RESUMO

A continuous cell line MPF derived from the fin of black carp Mylopharyngodon piceus was established and characterised in this study. Mylopharyngodon piceus fin (MPF) cells were subcultured for more than 80 passages with high viability recovery after long-term storage. The karyotyping analysis revealed that MPF had a modal diploid chromosome number (2n = 48) and identical ribosomal RNA sequence with black carp. In addition, the expression of pluripotency-associated markers including nanog, oct4 and vasa, were detected in MPF. The transient transfection efficiency of MPF reached 23% with a fluorescent reporter by modified electroporation and stable expression of red fluorescent MPF was established by the baculovirus system, indicating that MPF is an ideal platform for studying gene functions in vitro. Lastly, cytopathic effects were also observed and RNA transcripts of a viral gene increased after infection by spring viremia of carp virus (SVCV), suggesting that MPF could be an alternative tool for investigating pathogen-host interactions in black carp. In conclusion, a fin cell line that is susceptible to SVCV was established as a potential adult stem-cell line, providing a suitable tool for future genetic analyses and pathogen-host studies in black carp.


Assuntos
Nadadeiras de Animais/citologia , Cyprinidae , Cultura Primária de Células/métodos , Rhabdoviridae/crescimento & desenvolvimento , Nadadeiras de Animais/metabolismo , Nadadeiras de Animais/virologia , Animais , Linhagem Celular/metabolismo , Linhagem Celular/virologia , Cyprinidae/metabolismo , Cyprinidae/virologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes , Expressão Gênica , Marcadores Genéticos/genética , Marcadores Genéticos/fisiologia , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/virologia , Infecções por Rhabdoviridae/virologia , Transfecção/métodos
7.
Fish Shellfish Immunol ; 94: 220-229, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494279

RESUMO

Myeloid differentiation factor 88 (MyD88) is an important transduction protein in the Toll-like receptor signaling pathway. In this study, we identified the cDNA of the MpMyD88 gene in black carp. We found that MpMyD88 was widely distributed in the tissues tested and showed significant immune responses both in vitro and in vivo after stimulation with bacterial and pathogen-associated molecular patterns. After MpMyD88 overexpression/silencing, proinflame-matory cytokines (TNF-α, IFN-α, IL-6, and IL-8) also showed significant up-regulation/down-regulation. Moreover, we found that the antibacterial ability of cells over-expressing MpMyD88 was significantly stronger than that of control cells, while that of silenced MpMyD88 was significantly lower than that in control cells. Besides, we found that the overexpression of MpMyD88 significantly increased the activity of NF-κB. These results indicate that MpMyD88 plays an important role in the innate immune response.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Citocinas/genética , Citocinas/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Fator 88 de Diferenciação Mieloide/química , Filogenia , Alinhamento de Sequência/veterinária
8.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959850

RESUMO

: The highly conserved transcription factor Pax6 is involved in the development of the eyes, brain, and pancreas in vertebrates and invertebrates, whereas the additional expression pattern in other organs is still elusive. In this study, we cloned and characterized two pax6 homologs in blunt snout bream (Megalobrama amblycephala), named Mapax6a and Mapax6b. The protein alignment and phylogenetic tree showed that Mapax6a and Mapax6b were highly conserved compared with their counterparts in other species. Genomic information analysis revealed that the synteny conservation of Wilms tumor, Aniridia, genitourinary abnormalities, and mental retardation loci was also maintained in this species. By reverse transcription polymerase chain reaction, the expression of Mapax6a was later than that of Mapax6b which was found in the blastula stage, while the expression of Mapax6a started from the somite stage, and both of them persisted in a subsequent stage during the embryonic development. By RNA and protein detection, Mapax6a and Mapax6b were detected in the eye and brain as canonic patterns, and most importantly, they were also enriched in germ cells of the testis and ovary. Therefore, our findings validate the duplication of pax6 in fish, confirm the classical expression patterns in the brain and eye, and, for the first time, present a new acquisition of Mapax6a and Mapax6b in gonadal germ cells in particular. Therefore, our results enrich the expression pattern and evolutionary relationship of pax6 by suggesting that duplicated Mapax6 is involved in gametogenesis in Megalobrama amblycephala.


Assuntos
Cyprinidae/genética , Duplicação Gênica , Gônadas/metabolismo , Homologia de Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Cyprinidae/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Filogenia
9.
J Exp Zool B Mol Dev Evol ; 330(4): 242-246, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29873175

RESUMO

CRISPR/Cas9 system is a powerful tool to produce the genetic modification in plants and animals such as mouse and zebrafish. However, this technique was less reported in fish model medaka (Oryzias latipes). Here, we describe an efficient and rapid procedure for genome editing in medaka tyr and generate a stable albino strain. The Cas9 mRNA and gRNA for tyr gene were injected into the embryos of orange-red medaka, and the tyr gene was disrupted in more than 90% of embryos in F0 and F1, which were validated by observation and sequencing of targeted locus. The pigment cells were largely decreased in the mutant medaka because open reading frames of tyr were shifted near the targeted locus, generating albino medaka. Taken together, this method provides a detailed procedure to generate the genetic modification medaka by using an optimized CRISPR/Cas9 system, and the new albino medaka provides an important research platform to study the pigmentation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Oryzias/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Mutação da Fase de Leitura , Pigmentação/genética
10.
Int J Mol Sci ; 19(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486430

RESUMO

The recombinant baculovirus has been widely used as an efficient tool to mediate gene delivery into mammalian cells but has barely been used in fish cells. In the present study, we constructed a recombinant baculovirus containing the dual-promoter cytomegalovirus (CMV) and white spot syndrome virus (WSSV) immediate-early gene 1 (ie1) (WSSV ie1), followed by a puromycin⁻green fluorescent protein (Puro-GFP, pf) or puromycin⁻red fluorescent protein (Puro-RFP, pr) cassette, which simultaneously allowed for easy observation, rapid titer determination, drug selection, and exogenous gene expression. This recombinant baculovirus was successfully transduced into fish cells, including Mylopharyngodon piceus bladder (MPB), fin (MPF), and kidney (MPK); Oryzias latipes spermatogonia (SG3); and Danio rerio embryonic fibroblast (ZF4) cells. Stable transgenic cell lines were generated after drug selection, which was further verified by Western blot. A cell monoclonal formation assay proved the stable heredity of transgenic MPB cells. In addition, a recombinant baculovirus containing a pr cassette and four transcription factors for induced pluripotent stem cells (iPSC) was constructed and transduced into ZF4 cells, and these exogenous genes were simultaneously delivered and transcribed efficiently in drug-selected ZF4 cells, proving the practicability of this modified recombinant baculovirus system. We also proved that the WSSV ie1 promoter had robust activity in fish cells in vitro and in vivo. Taken together, this modified recombinant baculovirus can be a favorable transgenic tool to obtain transient or stable transgenic fish cells.


Assuntos
Baculoviridae/genética , Peixes/genética , Expressão Gênica , Vetores Genéticos/genética , Transgenes , Animais , Linhagem Celular , Ordem dos Genes , Técnicas de Transferência de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética
11.
Dev Genes Evol ; 227(4): 231-243, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28550373

RESUMO

Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.


Assuntos
Carpas/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Peixes/metabolismo , Células Germinativas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/crescimento & desenvolvimento , Clonagem Molecular , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Células Germinativas/metabolismo , Oogênese , Filogenia , Alinhamento de Sequência
12.
J Exp Zool B Mol Dev Evol ; 328(5): 412-422, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28547909

RESUMO

Gene duplication is a major driving force of evolution. How gene duplicates have evolved remains a mystery. A highly conserved gene such as Pax6 is an ideal model to study functional conservation and divergence via comparisons among diverse organisms. One pax6 gene has been characterized in the Japanese medaka (Oryzias latipes), which is annotated as pax6b on chromosome 3. Here, we report that Medaka pax6b is homolog to Pax6 of mammals in sequence, chromosomal synteny, and genomic organization. Cloning and sequencing led to the identification of up to 43 pax6b RNA variants predicting six protein isoforms, 22 of which are similar to those reported in other organisms and 21 represent novel RNA variants. By RT-PCR, the pax6b transcripts were found to be most abundant in the adult eye and easily detectable in the adult brain and pancreas but not detectable in developing embryos until gastrulation. Interestingly, apparently differential expression in adult organs was observed for several major variants. In situ hybridization revealed that pax6b exhibited highly conserved RNA expression in pancreas, brain, and eye of adult animals and developing embryos. Therefore, by sequence, chromosomal synteny, gene structure, conserved alternative transcription and splicing, and most importantly, conserved expression patterns in adulthood and embryogenesis, medaka pax6b represents a ortholog of Pax6 gene in mammals and is capable of generating differentially expressed RNA variants.


Assuntos
Regulação da Expressão Gênica/fisiologia , Variação Genética , Oryzias/genética , Fator de Transcrição PAX6/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Genômica , Fator de Transcrição PAX6/genética , Plasmídeos , Isoformas de Proteínas , RNA/genética , RNA/metabolismo
13.
J Exp Zool B Mol Dev Evol ; 328(8): 749-759, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28834149

RESUMO

The homeodomain transcription factor Nanog plays an essential role in maintaining pluripotency and self-renewal of embryonic stem cells in mammals. However, the evolutionary conservation of its ortholog in teleosts remains elusive. Here we isolated and characterized a Nanog homolog named as Ma-Nanog in blunt-snout bream (Megalobrama amblycephala). The full-length genomic sequence is 3,326 bp in length and consists of four exons encoding a homeodomain protein of 386 amino acid residues. Comparison of protein sequences revealed that Ma-Nanog is highly homologous to those in other teleosts, particularly in the homeodomain region. During embryogenesis, RNA expression of Nanog was only detected in early developmental embryos, predominantly at the blastula stage, which suggested the transcripts were mainly present in pluripotent stem cells. RNA fluorescence in situ hybridization verified that the signal of the transcripts is present in the germ cells. RNA expression was observed in the oogonia and early stage of oocytes in the ovary, or in the spermatogonia, spermatocytes, and spermatids in the testis. Surprisingly, the transcripts were also detected in adult tissues such as in liver by RT-PCR or qRT-PCR. Subcellular localization of the Nanog protein was also verified in nuclei. Taken together, these results suggested that Ma-Nanog is maternally inherited with conserved features, thus can be potentially used as a marker for stem cells in blunt-snout bream.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Herança Materna , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Perciformes/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Filogenia , RNA/genética
14.
Fish Shellfish Immunol ; 63: 261-269, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28232279

RESUMO

Mitochondrial antiviral signaling protein (MAVS) is an adaptor protein of the innate immune system of higher vertebrate. In this paper, the transcription profile of black carp MAVS (bcMAVS) in host cells in response to spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV) infection was identified. EPC cells expressing bcMAVS possessed obviously enhanced antiviral activity against both SVCV and GCRV. Immunofluorescence (IF) staining data demonstrated that bcMAVS molecules were redistributed and formed aggregates on the mitochondria of EPC cells after virus infection. Co-immunoprecipitation (co-IP) assay in HEK293T cells demonstrated that bcMAVS proteins bound to each other, which suggested that this fish protein owned self-association in vivo. IF assay identified that the transmembrane (TM) domain of bcMAVS was crucial for its mitochondrial localization. Co-IP assays among bcMAVS mutants demonstrated that both N-terminal caspase recruitment domain (CARD) and TM domain were indispensible for dimerization of bcMAVS. It was interesting that Truncated-bcMAVS possessed much enhanced interferon-inducing activity and antiviral ability than wild type bcMAVS, which only contains CARD and TM. All the data generated in this study support the idea that oligomerization of bcMAVS on mitochondrion is crucial for the antiviral ability of bcMAVS, which is depend on both CARD and TM domain of this fish MAVS orthologue.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carpas , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Expressão Gênica , Imunidade Inata , Infecções por Vírus de RNA/veterinária , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Domínio de Ativação e Recrutamento de Caspases , Linhagem Celular , Dimerização , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Análise de Sequência de DNA/veterinária
15.
Diabetologia ; 57(9): 1899-910, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24947582

RESUMO

AIMS/HYPOTHESIS: Somatostatin secretion from islet delta cells plays an important role in regulating islet function and is tightly controlled by environmental changes. Activation of the adrenergic system promoted somatostatin secretion from islet delta cells; however, the role of the adrenergic system in regulating somatostatin content and transcription has not been defined. An imbalance between the somatostatin content and its secretion may cause dysfunctions in the islet delta cells. We have investigated the role of the adrenergic system in the modulation of somatostatin content and transcription in pancreatic delta cells and the detailed underlying mechanisms of this regulation. METHODS: The stress hormone adrenaline (epinephrine), specific adrenergic agonists or specific adrenergic antagonists were applied to islets from either wild-type or specific adrenergic receptor knockout mice and pancreatic delta cell lines to investigate their effects on somatostatin content and transcription. The GloSensor assay, quantitative real-time PCR, western blots and the dual luciferase assay were used to monitor the cAMP level, somatostatin expression, activations of kinases and transcriptional factors. Arrb1 knockout mice, specific Creb or Pax6 mutations and specific kinase inhibitors were used to dissect the signalling pathway. RESULTS: Adrenaline and isoprenaline increased somatostatin content and transcription through the activation of ß1-/ß2-adrenergic receptors (ß1-/ß2ARs). The somatostatin content in ß1AR(-/-) /ß2AR(-/-) (Adrb1/Adrb2 knockout) mice was 50% lower than in ß1AR(+/+)/ß2AR (+/+) mice. Two parallel signalling pathways, Gs-cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB) and ß-arrestin 1-extracellular signal-related kinase (ERK)-paired box protein 6 (PAX6), cooperatively regulated isoprenaline-induced somatostatin transcription. CONCLUSIONS/INTERPRETATION: A stress pathway increased somatostatin content and transcription through ß-adrenergic agonism. ß-Arrestin1, ERK and PAX6 are important pancreatic delta cell regulators in addition to cAMP, PKA and CREB. Dysfunction of ß-adrenergic agonism may impair pancreatic delta cell function.


Assuntos
Arrestinas/metabolismo , Receptores Adrenérgicos/metabolismo , Células Secretoras de Somatostatina/metabolismo , Somatostatina/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , beta-Arrestina 1 , beta-Arrestinas
16.
Animals (Basel) ; 14(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891634

RESUMO

Upon encountering a virus, fish initiate an innate immune response, guided by IFNs. Foxo3 plays a part in the body's immune response; however, its specific role in the IFN-guided immune response in fish is yet to be clarified. In this study, we characterized foxo3 in Japanese medaka (Oryzias latipes) and examined its role in the IFN-dependent immune response upon infection with the RGNNV. The results show that the coding region of the medaka foxo3 gene is 2007 base pairs long, encoding 668 amino acids, and possesses a typical forkhead protein family structural domain. The product of this gene shares high homology with foxo3 in other fish species and is widely expressed, especially in the brain, eyes, testes, and heart. Upon RGNNV infection, foxo3-/- mutant larvae showed a lower mortality rate, and adults exhibited a significant reduction in virus replication. Moreover, the absence of foxo3 expression led to an increase in the expression of irf3, and a decrease in the expression of other IFN-related genes such as tbk1 and mapk9, implying that foxo3 may function as a negative regulator in the antiviral signaling pathway. These findings provide crucial insights for disease-resistant breeding in the aquaculture industry.

17.
Biochim Biophys Acta Gen Subj ; 1868(9): 130664, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942152

RESUMO

BACKGROUND: Chinese medaka (Oryzias sinensis) is widely distributed in freshwater rivers in China. Similar to the medaka (Oryzias latipes), Chinese medaka has the characteristics of small size, rapid reproductive cycle, and strong adaptability, which makes it suitable as a model organism for studies in basic biology and environmental toxicology. Chinese medaka exhibits distinct sexual dimorphism. However, due to the lack of complete genomic information, the regulation of sex determination and differentiation-related genes in Chinese medaka remains unclear. METHODS: Chinese medaka dmrt1 (Osdmrt1) was cloned by PCR, and transgenic individuals of medaka [Tg(CMV:Osdmrt1)] overexpressing Osdmrt1 were generated to investigate the role of Osdmrt1 in sex determination. Western blot was used to validate the integration of the Osdmrt1 into the medaka genome. Tissue sectioning and HE staining were used to identify Tg(CMV:Osdmrt1) physiological gender and phenotype. qRT-PCR was used to analyze the expression of gonad-specific genes. RESULTS: Osdmrt1 was cloned and identified, and it shared similar evolutionary relationships with medaka dmrt1. Tg(CMV:Osdmrt1) exhibited partial sex reversal from female to male in the F2 generation, with genetically female individuals developing testes and producing functional sperm. Additionally, the secondary sexual characteristics of the transgenic females also changed to males. CONCLUSION: The Chinese medaka dmrt1 gene could convert females to males in medaka. GENERAL SIGNIFICANCE: These results not only elucidate the function of Chinese medaka dmrt1, but also accumulate knowledge for studying the function of economically important fish genes in model fish by transgenic technology.

18.
Sci Total Environ ; 913: 169623, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159742

RESUMO

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.

19.
J Hazard Mater ; 469: 133984, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460263

RESUMO

Light-stabilizing additives may contribute to the overall pollution load of microplastics (MPs) and potentially enter the food chain, severely threatening aquatic life and human health. This study investigated the variation between polystyrene (PS) MPs and phthalocyanine blue (CuPC)-containing MPs before and after photoaging, as well as their effects on Microcystis aeruginosa. The presence of PS-MPs increased cell mortality, antioxidant enzyme activity, and the variation in extracellular components, while the presence of CuPC exacerbated these variations. CuPC-containing MPs caused different increasing trends in superoxide dismutase and malondialdehyde activities due to electron transfer across the membrane. Transcriptomic analysis revealed that the MPs and CuPC affected various cellular processes, with the greatest impact being on cell membranes. Compared with MPs, CuPC negatively affected ribosome and polysaccharide formation. These findings provide insights into the molecular mechanisms underlying the cellular response to MPs and their associated light-stabilizer pollution and imply the necessity for mitigating the pollution of both MPs and light-stabilizers.


Assuntos
Cianobactérias , Indóis , Microcystis , Compostos Organometálicos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Antioxidantes , Poliestirenos , Poluentes Químicos da Água/toxicidade
20.
Water Res ; 244: 120507, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639991

RESUMO

Mn(II) exhibits a superb ability in activating periodate (PI) for the efficient degradation of aqueous organic contaminants. Nevertheless, ambiguous conclusions regarding the involved reactive species contributing to the removal of organic contaminants remain unresolved. In this work, we found that the Mn(II)/PI process showed outstanding and selective reactivity for oxidizing sulfonamides with the removal ranging from 57.1% to 100% at pH 6.5. Many lines of evidence suggest that the in-situ formed colloidal MnO2 (cMnO2) served as a catalyst to mediate electron transfer from sulfonamides to PI on its surface via forming cMnO2-PI complex (cMnO2-PI*) for the efficient oxidation of sulfonamides in the Mn(II)/PI process. Experimental results and density functional theory (DFT) calculations verify that the inclusive aniline moiety was the key site determining the electron transfer-dominated oxidation of sulfonamides. Furthermore, DFT calculation results reveal that the discrepancies in the removal of sulfonamides in the Mn(II)/PI process were attributed to different kinetic stability and chemical reactivity of sulfonamides caused by their heterocyclic substituents. In addition, a high utilization efficiency of PI was achieved in the Mn(II)/PI process owing to the surface-mediated electron transfer mechanism. This work provides deep insights into the surface-promoted mechanism in the cMnO2-involved oxidation processes.


Assuntos
Antibacterianos , Compostos de Manganês , Óxidos , Elétrons , Oxirredução , Sulfanilamida , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA