Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Histopathology ; 84(3): 550-555, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983855

RESUMO

AIMS: Breast mucinous cystadenocarcinoma (BMCA) is a rare tumour recently recognised as a distinct entity by the World Health Organisation Tumour Classification Series. BMCA is a triple-negative tumour that lacks specific immunohistochemical markers; therefore, distinguishing it from mimickers such as ovarian and pancreatic cystadenocarcinomas requires careful clinicopathological correlation. Due to its rarity, little is known about the molecular alterations that underlie BMCA. METHODS AND RESULTS: In this study, we used immunohistochemical staining methods to investigate TRPS1 (trichorhinophalangeal syndrome type 1) expression in BMCA and compare it to expression in ovarian and pancreatic mucinous cystadenocarcinomas. We also collected tumour samples from three BMCA patients for molecular analysis by MALDI-TOF mass spectrometry, real-time polymerase chain reaction, whole exome sequencing and fluorescence in-situ hybridisation. TRPS1 immunoreactivity was found only in BMCA tumour cells and not in the ovarian and pancreatic counterparts. One of the three BMCA tumours also showed a PIK3CA hot-spot mutation, which was confirmed by whole genome next-generation sequencing (NGS). No KRAS, NRAS, BRAF or AKT mutations were found. CONCLUSIONS: To our knowledge, this is the first demonstration of TRPS1 expression in BMCA patients and the first identification of a PIK3CA hotspot mutation in these tumours. These findings provide insights into the molecular mechanisms underlying BMCA tumorigenesis and suggest a potential drug target for this rare and poorly understood cancer.


Assuntos
Cistadenocarcinoma Mucinoso , Neoplasias Pancreáticas , Humanos , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Repressoras/genética
2.
Cytotherapy ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38625070

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) are recognized for their potential immunomodulatory properties. In the immune system, tolerogenic dendritic cells (DCs), characterized by an immature phenotype, play a crucial role in inducing regulatory T cells (Tregs) and promoting immune tolerance. Notch1 signaling has been identified as a key regulator in the development and function of DCs. However, the precise involvement of Notch1 pathway in ASC-mediated modulation of tolerogenic DCs and its impact on immune modulation remain to be fully elucidated. This study aims to investigate the interplay between ASCs and DCs, focusing the role of Notch1 signaling and downstream pathways in ASC-modulated tolerogenic DCs. METHODS: Rat bone marrow-derived myeloid DCs were directly co-cultured with ASCs to generate ASC-treated DCs (ASC-DCs). Notch signaling was inhibited using DAPT, while NFκB pathways were inhibited by NEMO binding domain peptide and si-NIK. Flow cytometry assessed DC phenotypes. Real-time quantitative PCR, Western blotting and immunofluorescence determined the expression of Notch1, Jagged1 and the p52/RelB complex in ASC- DCs. RESULTS: Notch1 and Jagged1 were highly expressed on both DCs and ASCs. ASC-DCs displayed significantly reduced levels of CD80, CD86 and MHC II compared to mature DCs. Inhibiting the Notch pathway with DAPT reversed the dedifferentiation effects. The percentage of induced CD25+/FOXP3+/CD4+ Tregs decreased when ASC-DCs were treated with DAPT (inhibition of the Notch pathway) and si-NIK (inhibition of the non-canonical NFκB pathway). CONCLUSIONS: ASCs induce DC tolerogenicity by inhibiting maturation and promoting downstream Treg generation, involving the Notch and NFκB pathways. ASC-induced tolerogenic DCs can be a potential immunomodulatory tool for clinical application.

3.
Opt Lett ; 48(5): 1216-1219, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857252

RESUMO

Trapping and manipulating mesoscopic biological cells with high precision and flexibility are very important for numerous biomedical applications. In particular, a photonic nanojet based on a non-resonance focusing phenomenon can serve as a powerful tool for manipulating red blood cells and tumor cells in blood. In this study, we demonstrate an approach to trap and drive cells using a high-quality photonic nanojet which is produced by a specific microcone-shaped optical-fiber tip. The dynamic chemical etching method is used to fabricate optical-fiber probes with a microcone-shaped tip. Optical forces and potentials exerted on a red blood cell by a microcone-shaped fiber tips are analyzed based on finite-difference time-domain calculations. Optical trapping and driving experiments are done using breast cancer cells and red blood cells. Furthermore, a cell chain is formed by adjusting the magnitude of the optical force. The real-time backscattering intensities of multiple cells are detected, and highly sensitive trapping is achieved. This microcone-shaped optical fiber probe is potentially a powerful device for dynamic cell assembly, optical sorting, and the precise diagnosis of vascular diseases.


Assuntos
Eritrócitos , Fibras Ópticas , Pinças Ópticas , Fótons
4.
Environ Sci Technol ; 57(28): 10252-10262, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37422855

RESUMO

Biodegradation is commonly employed for remediating trichloroethene- or toluene-contaminated sites. However, remediation methods using either anaerobic or aerobic degradation are inefficient for dual pollutants. We developed an anaerobic sequencing batch reactor system with intermittent oxygen supply for the codegradation of trichloroethylene and toluene. Our results showed that oxygen inhibited anaerobic dechlorination of trichloroethene, but dechlorination rates remained comparable to that at dissolved oxygen levels of 0.2 mg/L. Intermittent oxygenation engendered reactor redox fluctuations (-146 to -475 mV) and facilitated rapid codegradation of targeting dual pollutants, with trichloroethene degradation constituting only 27.5% of the noninhibited dechlorination. Amplicon sequencing analysis revealed the predominance of Dehalogenimonas (16.0% ± 3.5%) over Dehalococcoides (0.3% ± 0.2%), with ten times higher transcriptomic activity in Dehalogenimonas. Shotgun metagenomics revealed numerous genes related to reductive dehalogenases and oxidative stress resistance in Dehalogenimonas and Dehalococcoides, as well as the enrichment of diversified facultative populations with functional genes related to trichloroethylene cometabolism and aerobic and anaerobic toluene degradation. These findings suggested that the codegradation of trichloroethylene and toluene may involve multiple biodegradation mechanisms. Overall results of this study demonstrate the effectiveness of intermittent micro-oxygenation in aiding trichloroethene-toluene degradation, suggesting the potential for the bioremediation of sites with similar organic pollutants.


Assuntos
Chloroflexi , Poluentes Ambientais , Tricloroetileno , Chloroflexi/genética , Chloroflexi/metabolismo , Tricloroetileno/metabolismo , Anaerobiose , Biodegradação Ambiental , Oxigênio
5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203304

RESUMO

This study explores the synergistic impact of Programmed Death Ligand 1 (PD-L1) and Protein Kinase B (Akt) overexpression in adipose-derived mesenchymal stem cells (AdMSCs) for ameliorating cardiac dysfunction after myocardial infarction (MI). Post-MI adult Wistar rats were allocated into four groups: sham, MI, ADMSC treatment, and ADMSCs overexpressed with PD-L1 and Akt (AdMSC-PDL1-Akt) treatment. MI was induced via left anterior descending coronary artery ligation, followed by intramyocardial AdMSC injections. Over four weeks, cardiac functionality and structural integrity were assessed using pressure-volume analysis, infarct size measurement, and immunohistochemistry. AdMSC-PDL1-Akt exhibited enhanced resistance to reactive oxygen species (ROS) in vitro and ameliorated MI-induced contractile dysfunction in vivo by improving the end-systolic pressure-volume relationship and preload-recruitable stroke work, together with attenuating infarct size. Molecular analyses revealed substantial mitigation in caspase3 and nuclear factor-κB upregulation in MI hearts within the AdMSC-PDL1-Akt group. Mechanistically, AdMSC-PDL1-Akt fostered the differentiation of normal T cells into CD25+ regulatory T cells in vitro, aligning with in vivo upregulation of CD25 in AdMSC-PDL1-Akt-treated rats. Collectively, PD-L1 and Akt overexpression in AdMSCs bolsters resistance to ROS-mediated apoptosis in vitro and enhances myocardial protective efficacy against MI-induced dysfunction, potentially via T-cell modulation, underscoring a promising therapeutic strategy for myocardial ischemic injuries.


Assuntos
Traumatismos Cardíacos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Ratos , Antígeno B7-H1 , Infarto do Miocárdio/terapia , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Espécies Reativas de Oxigênio
6.
Br J Cancer ; 126(5): 778-790, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34815524

RESUMO

BACKGROUND: Castration-resistant prostate cancer (CRPC) patients frequently develop neuroendocrine differentiation, with high mortality and no effective treatment. However, the regulatory mechanism that connects neuroendocrine differentiation and metabolic adaptation in response to therapeutic resistance of prostate cancer remain to be unravelled. METHODS: By unbiased cross-correlation between RNA-sequencing, database signatures, and ChIP analysis, combining in vitro cell lines and in vivo animal models, we identified that PCK1 is a pivotal regulator in therapy-induced neuroendocrine differentiation of prostate cancer through a LIF/ZBTB46-driven glucose metabolism pathway. RESULTS: Upregulation of PCK1 supports cell proliferation and reciprocally increases ZBTB46 levels to promote the expression of neuroendocrine markers that are conducive to the development of neuroendocrine characteristic CRPC. PCK1 and neuroendocrine marker expressions are regulated by the ZBTB46 transcription factor upon activation of LIF signalling. Targeting PCK1 can reduce the neuroendocrine phenotype and decrease the growth of prostate cancer cells in vitro and in vivo. CONCLUSION: Our study uncovers LIF/ZBTB46 signalling activation as a key mechanism for upregulating PCK1-driven glucose metabolism and neuroendocrine differentiation of CRPC, which may yield significant improvements in prostate cancer treatment after ADT using PCK1 inhibitors.


Assuntos
Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator Inibidor de Leucemia/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Análise de Sequência de RNA
7.
Opt Lett ; 47(4): 794-797, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167527

RESUMO

In this Letter, we propose a new, to the best of our knowledge, proof-of-concept of optical nano-tweezers based on a pair of dielectric rectangular structures that are capable of generating a finite-volume in-plane optical capsule. Finite-difference time-domain simulations of light spatial distributions and optical trapping forces of a gold nanoparticle immersed in water demonstrate the physical concept of an in-plane subwavelength optical capsule integrated with a microfluidic mesoscale device. It is shown that the refractive index of and the distance between the two dielectric rectangular structures can effectively control the shape and axial position of the optical capsule. Such an in-plane mesoscale structure provides a new path for manipulating absorbing nano-particles or bio-particles in a compact planar architecture, and should thus lead to promising perspectives in lab-on-a-chip domains.


Assuntos
Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas , Ouro , Pinças Ópticas , Refratometria
8.
J Biomed Sci ; 29(1): 36, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681232

RESUMO

BACKGROUND: Dry eye disease (DED) is a common disease in ophthalmology, affecting millions of people worldwide. Recent studies have shown that inflammation is the core mechanism of DED. IL-20 is a proinflammatory cytokine involved in various inflammatory diseases. Therefore, we aimed to explore the role of this cytokine in the pathogenesis of DED and evaluate the therapeutic potential of the anti-IL-20 monoclonal antibody (mAb) 7E for DED treatment. METHODS: Clinical tear samples from patients with DED and non-DED controls were collected and their IL-20 protein levels were determined. We established three DED animal models to explore the role of IL-20 and the efficacy of IL-20 antibody in DED. Benzalkonium chloride (BAC)-induced over-evaporative DED, extra-orbital lacrimal gland excision (LGE)-induced aqueous tear-deficient DED, and desiccating stress (DS)-induced combined over-evaporative and aqueous tear-deficient DED animal models were established to investigate the role of IL-20. The anti-IL-20 antibody 7E was established to neutralize IL-20 activity. The effects of IL-20 or 7E on human corneal epithelial cells and macrophages under hyperosmotic stress were analyzed. 7E was topically applied to eyes to evaluate the therapeutic effects in the DED animal models. RESULTS: IL-20 was significantly upregulated in the tears of patients with DED and in the tears and corneas of DED animal models. Under hyperosmotic stress, IL-20 expression was induced via NFAT5 activation in corneal epithelial cells. 7E suppressed hyperosmotic stress-induced activation of macrophages. IL-20 induced cell death in corneal epithelial cells and 7E protected cells from hyperosmotic stress-induced cell death. Blocking IL-20 signaling with 7E protected mice from BAC-induced, LGE-induced, and DS-induced DED by reducing DED symptoms and inhibiting inflammatory responses, macrophage infiltration, apoptosis, and Th17 populations in the conjunctiva and draining lymph nodes. CONCLUSIONS: Our results demonstrated the functions of IL-20 in DED and presented a potential therapeutic option for this condition.


Assuntos
Síndromes do Olho Seco , Interleucinas , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Interleucinas/metabolismo , Camundongos , Lágrimas/metabolismo
9.
Fish Shellfish Immunol ; 131: 368-380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243272

RESUMO

Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. In this study, full-length MnTRIM32 cDNA was obtained from oriental river prawn Macrobrachium nipponense, and eight MnTRIM32 isoforms generated by alternative splicing were identified. The open reading frames of the eight MnTRIM32 isoforms were predicted to be separately composed of 402, 346, 347, 346, 414, 358, 359, and 358 amino acid residues. Protein structural analysis revealed that all MnTRIM32 isoforms contained a RING domain and a coiled coil region. MnTRIM32 was ubiquitously expressed in all tissues tested, with the highest expression in the hepatopancreas. The mRNA levels of MnTRIM32 in the gills, stomach, and intestine of prawns were found to undergo time-dependent enhancement following white spot syndrome virus (WSSV) stimulation. Double-stranded RNA interference studies revealed that MnTRIM32 silencing significantly downregulated the expression levels of interferon (IFN) regulatory factor MnIRF, IFN-like factor MnVago4, and tumor necrosis factor MnTNF. Furthermore, knockdown of MnTRIM32 in WSSV-challenged prawns increased the expression of VP28 and the number of WSSV copies, suggesting that MnTRIM32 plays a positive role in limiting WSSV infection. These findings provided strong evidence for the important role of MnTRIM32 in the antiviral innate immunity of M. nipponense.


Assuntos
Palaemonidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Regulação da Expressão Gênica , Imunidade Inata/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Filogenia
10.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298289

RESUMO

The Tactile Internet enables physical touch to be transmitted over the Internet. In the context of electronic medicine, an authenticated key agreement for the Tactile Internet allows surgeons to perform operations via robotic systems and receive tactile feedback from remote patients. The fifth generation of networks has completely changed the network space and has increased the efficiency of the Tactile Internet with its ultra-low latency, high data rates, and reliable connectivity. However, inappropriate and insecure authentication key agreements for the Tactile Internet may cause misjudgment and improper operation by medical staff, endangering the life of patients. In 2021, Kamil et al. developed a novel and lightweight authenticated key agreement scheme that is suitable for remote surgery applications in the Tactile Internet environment. However, their scheme directly encrypts communication messages with constant secret keys and directly stores secret keys in the verifier table, making the scheme vulnerable to possible attacks. Therefore, in this investigation, we discuss the limitations of the scheme proposed by Kamil scheme and present an enhanced scheme. The enhanced scheme is developed using a one-time key to protect communication messages, whereas the verifier table is protected with a secret gateway key to mitigate the mentioned limitations. The enhanced scheme is proven secure against possible attacks, providing more security functionalities than similar schemes and retaining a lightweight computational cost.


Assuntos
Segurança Computacional , Telemedicina , Humanos , Confidencialidade , Tato , Internet
11.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563285

RESUMO

Skin is an important organ that mainly functions as a barrier. Skin diseases can damage a person's self-confidence and reduce their willingness to socialize, as well as their social behavior and willingness. When the skin appearance is abnormal, in addition to affecting the quality of life, it often leads to personal, social, and psychological dysfunction and even induces depression. Psoriasis and atopic dermatitis are common chronic skin diseases. Their prevalence in the world is 3-10%, and there is an increasing trend year by year. These congenital or acquired factors cause the dysfunction of the immune system and then destroy the barrier function of the skin. Because these patients are flooded with a variety of inflammatory mediators, this causes skin cells to be in chronic inflammation. Therefore, psoriasis and atopic dermatitis are also considered systemic chronic inflammatory diseases. In the healthcare systems of developed countries, it is unavoidable to spend high costs to relieve symptoms of psoriasis and atopic dermatitis patients, because psoriasis and atopic dermatitis have a great influence on individuals and society. Giving a lot of attention and developing effective treatment methods are the topics that the medical community must work on together. Therefore, we used a narrative review manuscript to discuss pathogenesis, clinical classification, incidence, and treatment options, including topical medication, systemic therapeutics, immunosuppressive medication for psoriasis, and atopic dermatitis, as well as also comparing the differences between these two diseases. We look forward to providing readers with comprehensive information on psoriasis and atopic dermatitis through this review article.


Assuntos
Dermatite Atópica , Psoríase , Dermatopatias , Doença Crônica , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/terapia , Humanos , Psoríase/epidemiologia , Psoríase/etiologia , Psoríase/terapia , Qualidade de Vida , Pele/patologia
12.
J Environ Manage ; 303: 114145, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844052

RESUMO

Hydrogen-releasing substrates can stimulate the reductive dechlorination of trichloroethene (TCE) mediated by organohalide-respiring bacteria (OHRB) at contaminated sites. However, how the substrate affects microbiome assembly and the accompanying influences on the growth of OHRB and reductive TCE dechlorination remains unclear. We evaluated the effects of microbial community structures and potential functions on the reductive dechlorination of TCE in three anaerobic reactors with acetate, soybean oil, or molasses as the substrate and no cobalamin or amino acid supplementation. The molasses-fed reactor exhibited superior performance and dechlorination of TCE loadings to ethene, and the oil-fed reactor exhibited a high growth rate of the key OHRB, Dehalococcoides. This finding suggests an effect of the substrate on reductive dechlorination and the growth of Dehalococcoides. The three reactors developed distinct microbial community structures and the predicted metagenomes were distinguished on the basis of vitamin and amino acid metabolisms as well as fermentation pathways. In addition to the diversified hydrogen-producing pathways, the molasses-induced microbiome exhibited high potential to synthesize the cobalamin, which may account for its high Dehalococcoides activity and thus effective dechlorination performance. The substrate dependence of microbiomes may provide insight into strategies of exogenous amino acid supplementation to benefit Dehalococcoides growth. This study adds novel insight into the interplay of hydrogen-releasing substrates and OHRB. The results may contribute to the development of tailored and cost-effective management for the reductive dechlorination of chlorinated solvents in bioremediation.


Assuntos
Chloroflexi , Microbiota , Tricloroetileno , Biodegradação Ambiental , Chloroflexi/genética , Fermentação
13.
Acta Cardiol Sin ; 38(1): 39-46, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35068882

RESUMO

BACKGROUND: Despite the increasing prevalence of therapies utilizing immune checkpoint inhibitors (ICIs), the associated cardiovascular complications have been poorly reported. Given the fatality of ICI-related complications, especially myocarditis, optimal risk stratification to predict major adverse cardio- and cerebrovascular events (MACCEs) in patients receiving ICIs is mandatory. METHODS: We collected clinical data from patients receiving ICIs, and the primary outcomes were MACCEs, including myocarditis, heart failure, and ischemic stroke. Other systemic immune responses relating to ICIs were also recorded. The median follow-up duration was 3 years. RESULTS: Among 580 patients, the incidence of MACCEs was 3.9%. Older patients, male patients, and patients with lung cancer, liver cirrhosis, or diabetes had higher risks of MACCEs. There was no significant difference between the use of PD-1/PD-L1 inhibitors or CTLA inhibitors in terms of developing cardiovascular toxicities. The development of ICI-related MACCEs was associated with worse survival. Notably, after re-review by specialists, three patients eventually diagnosed with ICI-related myocarditis had not previously been identified. Only one was treated with pulse steroids, and none survived. The most common concomitant extracardiac immune-related adverse events were myositis/dermatitis, endocrine toxicity and hepatitis. CONCLUSIONS: Collectively, ICIs may lead to severe cardiovascular toxicities and require more attention. Early identification, proper diagnosis, and prompt treatment are pivotal for improving survival.

14.
Opt Lett ; 46(17): 4292-4295, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469997

RESUMO

In this Letter, we report on a numerical study, fabrication, and experimental observations of photonic nanojet (PNJ) shaping by control of a tangential electric field component. Here the PNJs are generated by a single mesoscale micro-cube that is fabricated from polydimethylsiloxane, deposited on a silicon substrate and placed on thick metal screen at illuminating wavelengths of 405, 532, and 671 nm. It is shown that the length, focal length, and width of the PNJ can be significantly reduced in the presence of the metal masks along the side faces of the micro-cube. Experimental measurements of the PNJ imaging are performed by a scanning optical microscope with laser sources. Our experimental results are in reasonable agreement with simulation predictions of the finite-difference time-domain method. Due to the appearance of the metal masks, the PNJ focal length decreases 1.5 times, the PNJ decay length decreases 1.7 times, and the PNJ resolution increases 1.2 times. Such PNJs possess great potential in complex manipulation, including integrated plasmonic circuits, biosensing, and optical tweezers.

15.
Ecotoxicol Environ Saf ; 210: 111867, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387907

RESUMO

The antimicrobial residues of aquacultural production is a growing public concern, leading to reexamine the method for establishing robust withdrawal time and ensuring food safety. Our study aims to develop the optimizing population physiologically-based pharmacokinetic (PBPK) model for assessing florfenicol residues in the tilapia tissues, and for evaluating the robustness of the withdrawal time (WT). Fitting with published pharmacokinetic profiles that experimented under temperatures of 22 and 28 °C, a PBPK model was constructed by applying with the Bayesian Markov chain Monte Carol (MCMC) algorithm to estimate WTs under different physiological, environmental and dosing scenarios. Results show that the MCMC algorithm improves the estimates of uncertainty and variability of PBPK-related parameters, and optimizes the simulation of the PBPK model. It is noteworthy that posterior sets generated from temperature-associated datasets to be respectively used for simulating residues under corresponding temperature conditions. Simulating the residues under regulated regimen and overdosing scenarios for Taiwan, the estimated WTs were 12-16 days at 22 °C and 9-12 days at 28 °C, while for the USA, the estimated WTs were 14-18 and 11-14 days, respectively. Comparison with the regulated WT of 15 days, results indicate that the current WT has well robustness and resilience in the environment of higher temperatures. The optimal Bayesian population PBPK model provides effective analysis for determining WTs under scenario-specific conditions. It is a new insight into the increasing body of literature on developing the Bayesian-PBPK model and has practical implications for improving the regulation of food safety.


Assuntos
Antibacterianos/farmacocinética , Modelos Biológicos , Tianfenicol/análogos & derivados , Tilápia/metabolismo , Animais , Aquicultura , Teorema de Bayes , Cadeias de Markov , Método de Monte Carlo , Taiwan , Tianfenicol/farmacocinética
16.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638904

RESUMO

Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.


Assuntos
Imunidade Inata/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Movimento Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Transdução de Sinais/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia
17.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830289

RESUMO

High serum levels of free fatty acids (FFAs) could contribute to obesity-induced nephropathy. CD36, a class B scavenger receptor, is a major receptor mediating FFA uptake in renal proximal tubular cells. Empagliflozin, a new anti-diabetic agent, is a specific inhibitor of sodium-glucose co-transporter 2 channels presented on renal proximal tubular cells and inhibits glucose reabsorption. In addition, empagliflozin has shown renoprotective effects. However, the mechanism through which empagliflozin regulates CD36 expression and attenuates FFA-induced lipotoxicity remains unclear. Herein, we aimed to elucidate the crosstalk between empagliflozin and CD36 in FFA-induced renal injury. C57BL/6 mice fed a high-fat diet (HFD) and palmitic acid-treated HK-2 renal tubular cells were used for in vivo and in vitro assessments. Empagliflozin attenuated HFD-induced body weight gain, insulin resistance, and inflammation in mice. In HFD-fed mice, CD36 was upregulated in the tubular area of the kidney, whereas empagliflozin attenuated CD36 expression. Furthermore, empagliflozin downregulated the expression of peroxisome proliferator-activated receptor (PPAR)-γ. Treatment with a PPARγ inhibitor (GW9662) did not further decrease PPARγ expression, whereas a PPARγ antagonist reversed this effect; this suggested that empagliflozin may, at least partly, decrease CD36 by modulating PPARγ. In conclusion, empagliflozin can ameliorate FFA-induced renal tubular injury via the PPARγ/CD36 pathway.


Assuntos
Compostos Benzidrílicos/administração & dosagem , Antígenos CD36/metabolismo , Ácidos Graxos não Esterificados/efeitos adversos , Glucosídeos/administração & dosagem , Túbulos Renais Proximais/citologia , PPAR gama/metabolismo , Substâncias Protetoras/administração & dosagem , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Animais , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ácido Palmítico/farmacologia , Insuficiência Renal/metabolismo , Resultado do Tratamento
18.
Allergy ; 75(4): 818-830, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31622507

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) infection is epidemiologically linked to asthma. During RSV infection, IL-33 is elevated and promotes immune cell activation, leading to the development of asthma. However, which immune cells are responsible for triggering airway hyperreactivity (AHR), inflammation and eosinophilia remained to be clarified. We aimed to elucidate the individual roles of IL-33-activated innate immune cells, including ILC2s and ST2+ myeloid cells, in RSV infection-triggered pathophysiology. METHODS: The role of IL-33/ILC2 axis in RSV-induced AHR inflammation and eosinophilia were evaluated in the IL-33-deficient and YetCre-13 Rosa-DTA mice. Myeloid-specific, IL-33-deficient or ST2-deficient mice were employed to examine the role of IL-33 and ST2 signaling in myeloid cells. RESULTS: We found that IL-33-activated ILC2s were crucial for the development of AHR and airway inflammation, during RSV infection. ILC2-derived IL-13 was sufficient for RSV-driven AHR, since reconstitution of wild-type ILC2 rescued RSV-driven AHR in IL-13-deficient mice. Meanwhile, myeloid cell-derived IL-33 was required for airway inflammation, ST2+ myeloid cells contributed to exacerbation of airway inflammation, suggesting the importance of IL-33 signaling in these cells. Local and peripheral eosinophilia is linked to both ILC2 and myeloid IL-33 signaling. CONCLUSIONS: This study highlights the importance of IL-33-activated ILC2s in mediating RSV-triggered AHR and eosinophilia. In addition, IL-33 signaling in myeloid cells is crucial for airway inflammation.


Assuntos
Asma , Eosinofilia , Interleucina-33 , Hipersensibilidade Respiratória , Animais , Asma/metabolismo , Eosinofilia/metabolismo , Imunidade Inata , Interleucina-33/fisiologia , Pulmão , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade Respiratória/imunologia , Vírus Sinciciais Respiratórios
19.
J Pathol ; 249(4): 498-508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31465125

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and treatment-resistant malignancy. The lack of pathway-informed biomarkers hampers the development of rational diagnostics or therapies. Recently, the protein abnormal spindle-like microcephaly-associated (ASPM) was identified as a novel Wnt and stemness regulator in PDAC, while the pathogenic roles of its protein isoforms remain unclarified. We developed novel isoform-specific antibodies and genetic knockdown (KD) of putative ASPM isoforms, whereby we uncovered that the levels of ASPM isoform 1 (iI) and ASPM-iII are variably upregulated in PDAC cells. ASPM isoforms show remarkably different subcellular locations; specifically, ASPM-iI is exclusively localized to the cortical cytoplasm of PDAC cells, while ASPM-iII is predominantly expressed in cell nuclei. Mechanistically, ASPM-iI co-localizes with disheveled-2 and active ß-catenin as well as the stemness marker aldehyde dehydrogenase-1 (ALDH-1), and its expression is indispensable for the Wnt activity, stemness, and the tumorigenicity of PDAC cells. By contrast, ASPM-iII selectively regulates the expression level of cyclin E and cell cycle progression in PDAC cells. The expression of ASPM-iI and ASPM-iII displays considerable intratumoral heterogeneity in PDAC tissues and only that of ASPM-iI was prognostically significant; it outperformed ALDH-1 staining and clinico-pathological variables in a multivariant analysis. Collectively, the distinct expression patterns and biological functions of ASPM isoforms may illuminate novel molecular mechanisms and prognosticators in PDAC and may pave the way for the development of therapies targeting this novel oncoprotein. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Ciclo Celular , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt , Família Aldeído Desidrogenase 1/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Ciclina E/metabolismo , Proteínas Desgrenhadas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Isoformas de Proteínas , beta Catenina/metabolismo
20.
Ecotoxicol Environ Saf ; 201: 110763, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32505759

RESUMO

We aim to assess the risks of renal dysfunction and osteoporosis that is attributed to the seawater acidification caused cadmium (Cd) level increase in human consumed shellfish. A physiology-based pharmacokinetic model was used to estimate Cd concentrations in urine and blood among shellfish-only consumers and among the general population. We used the benchmark dose (BMD) method to determine the threshold limits of Cd in urine for renal dysfunction and in blood for osteoporosis for assessing the human health risk. Our results revealed that seawater acidification could increase the Cd accumulation in shellfish by 10-13% compared to the situations under current pH levels. Under the lower seawater pH level, the daily intake of Cd could increase by 21%-67% among shellfish-only consumers, and by 13%-17% among the general population. Our findings indicated that seawater acidification would lead to a marginal increase in Cd intake among humans in shellfish-only consumers. The results of BMDs of urinary Cd showed that the threshold limits for renal dysfunction at 5% were 3.00 µg g-1 in males and 12.35 µg g-1 in females. For osteoporosis, the estimated BMDs of blood Cd were 7.95 µg L-1 in males and 1.23 µg L-1 in females. These results of the risk of Cd intake showed that the consumption of Cd-contaminated shellfish in the general population is largely unaffected by changes in seawater pH levels. Notably, the potential impact of seawater acidification on renal dysfunction for males in shellfish-only consumers face a 14% increase of risk.


Assuntos
Cádmio/normas , Exposição Dietética/estatística & dados numéricos , Poluentes Químicos da Água/normas , Benchmarking , Cádmio/sangue , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Alimentos Marinhos , Água do Mar/química , Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA