Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Calcif Tissue Int ; 113(3): 286-294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477662

RESUMO

Dozens of loci associated with fracture have been identified by genome-wide association studies (GWASs). However, most of these variants are located in the noncoding regions including introns, long terminal repeats, and intergenic regions. Although combining regulation information helps to identify the causal SNPs and interpret the involvement of these variants in the etiology of human fracture, regulation information which was truly associated with fracture was unknown. A novel functional enrichment method GARFIELD (GWAS Analysis of Regulatory of Functional Information Enrichment with LD correction) was applied to identify fracture-associated regulation information, including transcript factor binding sites, expression quantitative trait loci (eQTLs), chromatin states, enhancer, promoter, dyadic, super enhancer and Epigenome marks. Fracture SNPs were significantly enriched in exon (Bonferroni correction, p value < 7.14 × 10-3) at two GWAS p value thresholds through GARFIELD. High level of fold-enrichment was observed in super enhancer of monocyte and the enhancer of chondrocyte (Bonferroni correction, p value < 4.45 × 10-3). eQTLs of 44 tissues/cells and 10 transcription factors (TFs) were identified to be associated with human fracture. These results provide new insight into the etiology of human fracture, which might increase the identification of the causal SNPs through the fine-mapping study combined with functional annotation, as well as polygenic risk score.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla/métodos , Regiões Promotoras Genéticas , Locos de Características Quantitativas/genética , Fatores de Transcrição , Predisposição Genética para Doença
2.
Ann Hum Genet ; 85(6): 201-212, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115876

RESUMO

Bone mineral density (BMD) and whole-body lean mass (WBLM) are two important phenotypes of osteoporosis and sarcopenia. Previous studies have shown that BMD and lean mass were phenotypically and genetically correlated. To identify the novel common genetic factors shared between BMD and WBLM, we performed the conditional false discovery rate (cFDR) analysis using summary data of the genome-wide association study of femoral neck BMD (n = 53,236) and WBLM (n = 38,292) from the Genetic Factors for Osteoporosis Consortium (GEFOS). We identified eight pleiotropic Single Nucleotide Polymorphism (SNPs) (PLCL1 rs11684176 and rs2880389, JAZF1 rs198, ADAMTSL3 rs10906982, RFTN2/MARS2 rs7340470, SH3GL3 rs1896797, ST7L rs10776755, ANKRD44/SF3B1 rs11888760) significantly associated with femoral neck BMD and WBLM (ccFDR < 0.05). Bayesian fine-mapping analysis showed that rs11888760, rs198, and rs1896797 were the possible functional variants in the ANKRD44/SF3B1, JAZF1i, and SH3GL3 loci, respectively. Functional annotation suggested that rs11888760 was likely to comprise a DNA regulatory element and linked to the expression of RFTN2 and PLCL1. PLCL1 showed differential expression in laryngeal posterior cricoarytenoid muscle between rats of 6 months and 30 months of age. Our findings, together with PLCL1's potential functional relevance to bone and skeletal muscle function, suggested that rs11888760 was the possible pleiotropic functional variants appearing to coregulate both bone and muscle metabolism through regulating the expression of PLCL1. The findings enhanced our knowledge of genetic associations between BMD and lean mass and provide a rationale for subsequent functional studies of the implicated genes in the pathophysiology of diseases, such as osteoporosis and sarcopenia.


Assuntos
Adiposidade/genética , Densidade Óssea/genética , Pleiotropia Genética , Fosfoinositídeo Fosfolipase C/genética , Animais , Teorema de Bayes , Estudo de Associação Genômica Ampla , Humanos , Osteoporose/genética , Polimorfismo de Nucleotídeo Único , Ratos
3.
Ann Hum Genet ; 82(5): 244-253, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663307

RESUMO

Recent studies suggested that long noncoding RNAs (lncRNAs) were widely transcribed in the genome, but their potential roles in the genetic complexity of human disorders required further exploration. The purpose of the present study was to explore genetic polymorphisms of lncRNAs associated with bone mineral density (BMD) and its potential value. Based on the lncRNASNP database, 55,906 lncSNPs were selected to conduct a genome-wide association study meta-analysis among 11,140 individuals of seven independent studies for BMDs at femoral neck (FN), lumbar spine, and total hip (HIP). Promising results were replicated in Genetic Factors for Osteoporosis Consortium (GEFOS Sequencing, n = 32,965). We found two lncRNA loci that were significantly associated with BMD. MEF2C antisense RNA 1 (MEF2C-AS1) located at 5q14.3 was significantly associated with FN-BMD after Bonferroni correction, and the strongest association signal was detected at rs6894139 (P = 3.03 × 10-9 ). LOC100506136 rs6465531 located at 7q21.3 showed significant association with HIP-BMD (P = 7.43 × 10-7 ). MEF2C-AS1 rs6894139 was replicated in GEFOS Sequencing with P-value of 1.43 × 10-23 . Our results illustrated the important role of polymorphisms in lncRNAs in determining variations of BMD and provided justification and evidence for subsequent functional studies.


Assuntos
Densidade Óssea/genética , Estudo de Associação Genômica Ampla , RNA Longo não Codificante/genética , Bases de Dados Genéticas , Humanos , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único
4.
Hum Genet ; 137(3): 247-255, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29460149

RESUMO

Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.


Assuntos
Densidade Óssea/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Osteoporose/genética , Feminino , Colo do Fêmur/fisiopatologia , Humanos , Masculino , Modelos Genéticos , Osteoporose/fisiopatologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
Hum Mol Genet ; 24(16): 4710-27, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25941324

RESUMO

MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNA target sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)- and femoral neck (FN)-bone mineral density (BMD). In stage I, 41 102 poly-miRTSs were meta-analyzed in seven cohorts with a genome-wide significance (GWS) α = 0.05/41 102 = 1.22 × 10(-6). By applying α = 5 × 10(-5) (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P = 7.67 × 10(-6) and 1.58 × 10(-5)) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P = 5.08 × 10(-3)) at α = 0.10/11 = 9.09 × 10(-3). PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P = 7.55 × 10(-6)) at α = 0.05/2 = 0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P = 8.87 × 10(-12)). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation.


Assuntos
Regiões 3' não Traduzidas , Densidade Óssea/genética , Loci Gênicos , MicroRNAs/genética , Polimorfismo Genético , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
6.
J Bone Miner Metab ; 35(6): 649-658, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28012008

RESUMO

Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10-8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Densidade Óssea/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla , População Branca/genética , Adulto , Feminino , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
7.
Biomed Environ Sci ; 27(5): 360-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24827717

RESUMO

OBJECTIVE: Obesity is becoming a worldwide health problem. The genome wide association (GWA) study particularly for body mass index (BMI) has not been successfully conducted in the Chinese. In order to identify novel genes for BMI variation in the Chinese, an initial GWA study and a follow up replication study were performed. METHODS: Affymetrix 500K SNPs were genotyped for initial GWA of 597 Northern Chinese. After quality control, 281,533 SNPs were included in the association analysis. Three SNPs were genotyped in a Southern Chinese replication sample containing 2 955 Chinese Han subjects. Association analyses were performed by Plink software. RESULTS: Eight SNPs were significantly associated with BMI variation after false discovery rate (FDR) correction (P=5.45×10⁻7-7.26×10⁻6, FDR q=0.033-0.048). Two adjacent SNPs (rs4432245 & rs711906) in the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) gene were significantly associated with BMI (P=6.38×10⁻6 & 4.39×10⁻6, FDR q=0.048). In the follow-up replication study, we confirmed the associations between BMI and rs4432245, rs711906 in the EIF2AKE gene (P=0.03 & 0.01, respectively). CONCLUSION: Our study suggests novel mechanisms for BMI, where EIF2AK4 has exerted a profound effect on the synthesis and storage of triglycerides and may impact on overall energy homeostasis associated with obesity. The minor allele frequencies for the two SNPs in the EIF2AK4 gene have marked ethnic differences between Caucasians and the Chinese. The association of the EIF2AK4 gene with BMI is suggested to be 'ethnic specific' in the Chinese.


Assuntos
Índice de Massa Corporal , Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Idoso , Povo Asiático/genética , China/epidemiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/etnologia , Polimorfismo de Nucleotídeo Único
8.
Am J Med Genet B Neuropsychiatr Genet ; 165B(2): 103-10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24277619

RESUMO

Alcohol dependence (AD) is a moderately heritable phenotype with a small number of known risk genes mapped via linkage or candidate gene studies. We considered 313 males from among 595 members of documented, extended pedigrees in which AD segregates collected in Northern Hunan Province, China. A joint analysis of both males and females could not be performed as the difference in alcohol consumption variance was too large. Genome-wide association analyses were performed for approximately 300,000 single nucleotide polymorphisms (SNPs). Significant associations found in the ALDH2 region for AD (minimum P = 4.73 × 10(-8)) and two AD-related phenotypes: flushing response (minimum P = 4.75 × 10(-26)) and maximum drinks in a 24-hr period (minimum P = 1.54 × 10(-16)). Association of previous candidate SNP, rs10774610 in CCDC63, was confirmed but resulted from linkage disequilibrium with ALDH2. ALDH2 is strongly associated with flushing response, AD, and maximum drinks in males, with nonsynonymous SNP rs671 explaining 29.2%, 7.9%, and 22.9% of phenotypic variation, respectively, in this sample. When rs671 was considered as a candidate SNP in females, it explained 23.6% of the variation in flushing response, but alcohol consumption rates were too low among females-despite familial enrichment for AD-for an adequate test of association for either AD or maximum drinks. These results support a mediating effect of aldehyde dehydrogenase deficiency on alcohol consumption in males and a secondary, culturally mediated limitation on alcohol consumption by females that should be appropriately modeled in future studies of alcohol consumption in populations where this may be a factor.


Assuntos
Alcoolismo/genética , Aldeído Desidrogenase/genética , Povo Asiático/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alcoolismo/etiologia , Aldeído-Desidrogenase Mitocondrial , Feminino , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fatores Sexuais
9.
Am J Med Genet B Neuropsychiatr Genet ; 165B(4): 294-302, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692236

RESUMO

Linkage studies of alcoholism have implicated several chromosome regions, leading to the successful identification of susceptibility genes, including ADH4 and GABRA2 on chromosome 4. Quantitative endophenotypes that are potentially closer to gene action than clinical endpoints offer a means of obtaining more refined linkage signals of genes that predispose alcohol use disorders (AUD). In this study we examine a self-reported measure of the maximum number of drinks consumed in a 24-hr period (abbreviated Max Drinks), a significantly heritable phenotype (h(2) = 0.32 ± 0.05; P = 4.61 × 10(-14)) with a strong genetic correlation with AUD (ρg = 0.99 ± 0.13) for the San Antonio Family Study (n = 1,203). Genome-wide SNPs were analyzed using variance components linkage methods in the program SOLAR, revealing a novel, genome-wide significant QTL (LOD = 4.17; P = 5.85 × 10(-6)) for Max Drinks at chromosome 6p22.3, a region with a number of compelling candidate genes implicated in neuronal function and psychiatric illness. Joint analysis of Max Drinks and AUD status shows that the QTL has a significant non-zero effect on diagnosis (P = 4.04 × 10(-3)), accounting for 8.6% of the total variation. Significant SNP associations for Max Drinks were also identified at the linkage region, including one, rs7761213 (P = 2.14 × 10(-4)), obtained for an independent sample of Chinese families. Thus, our study identifies a potential risk locus for AUD at 6p22.3, with significant pleiotropic effects on the heaviness of alcohol consumption that may not be population specific.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Cromossomos Humanos Par 6/genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Endofenótipos , Feminino , Estudos de Associação Genética , Ligação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
10.
Front Immunol ; 15: 1334479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680491

RESUMO

Background: The immune microenvironment assumes a significant role in the pathogenesis of osteoarthritis (OA). However, the current biomarkers for the diagnosis and treatment of OA are not satisfactory. Our study aims to identify new OA immune-related biomarkers to direct the prevention and treatment of OA using multi-omics data. Methods: The discovery dataset integrated the GSE89408 and GSE143514 datasets to identify biomarkers that were significantly associated with the OA immune microenvironment through multiple machine learning methods and weighted gene co-expression network analysis (WGCNA). The identified signature genes were confirmed using two independent validation datasets. We also performed a two-sample mendelian randomization (MR) study to generate causal relationships between biomarkers and OA using OA genome-wide association study (GWAS) summary data (cases n = 24,955, controls n = 378,169). Inverse-variance weighting (IVW) method was used as the main method of causal estimates. Sensitivity analyses were performed to assess the robustness and reliability of the IVW results. Results: Three signature genes (FCER1G, HLA-DMB, and HHLA-DPA1) associated with the OA immune microenvironment were identified as having good diagnostic performances, which can be used as biomarkers. MR results showed increased levels of FCER1G (OR = 1.118, 95% CI 1.031-1.212, P = 0.041), HLA-DMB (OR = 1.057, 95% CI 1.045 -1.069, P = 1.11E-21) and HLA-DPA1 (OR = 1.030, 95% CI 1.005-1.056, P = 0.017) were causally and positively associated with the risk of developing OA. Conclusion: The present study identified the 3 potential immune-related biomarkers for OA, providing new perspectives for the prevention and treatment of OA. The MR study provides genetic support for the causal effects of the 3 biomarkers with OA and may provide new insights into the molecular mechanisms leading to the development of OA.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/diagnóstico , Transcriptoma , Predisposição Genética para Doença , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único
11.
PLoS Genet ; 6(1): e1000806, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20072603

RESUMO

Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08x10(-9), odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39x10(-6)), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.


Assuntos
Aldeído Desidrogenase/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Osteoporose/genética , Idoso , Povo Asiático/genética , Densidade Óssea , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/fisiopatologia , Polimorfismo de Nucleotídeo Único , População Branca/genética
12.
Front Pharmacol ; 14: 1211302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547327

RESUMO

Background: Lipid pathways have been implicated in the pathogenesis of osteoporosis (OP). Lipid-lowering drugs may be used to prevent and treat OP. However, the causal interpretation of results from traditional observational designs is controversial by confounding. We aimed to investigate the causal association between genetically proxied lipid-lowering drugs and OP risk. Methods: We conducted two-step Mendelian randomization (MR) analyses to investigate the causal association of genetically proxied lipid-lowering drugs on the risk of OP. The first step MR was used to estimate the associations of drug target genes expression with low-density lipoprotein cholesterol (LDL-C) levels. The significant SNPs in the first step MR were used as instrumental variables in the second step MR to estimate the associations of LDL-C levels with forearm bone mineral density (FA-BMD), femoral neck BMD (FN-BMD), lumbar spine BMD (LS-BMD) and fracture. The significant lipid-lowering drugs after MR analyses were further evaluated for their effects on bone mineralization using a dexamethasone-induced OP zebrafish model. Results: The first step MR analysis found that the higher expression of four genes (HMGCR, NPC1L1, PCSK9 and PPARG) was significantly associated with a lower LDL-C level. The genetically decreased LDL-C level mediated by the PPARG was significantly associated with increased FN-BMD (BETA = -1.38, p = 0.001) and LS-BMD (BETA = -2.07, p = 3.35 × 10-5) and was marginally significantly associated with FA-BMD (BETA = -2.36, p = 0.008) and reduced fracture risk (OR = 3.47, p = 0.008). Bezafibrate (BZF) and Fenofibric acid (FBA) act as PPARG agonists. Therefore genetically proxied BZF and FBA had significant protective effects on OP. The dexamethasone-induced OP zebrafish treated with BZF and FBA showed increased bone mineralization area and integrated optical density (IOD) with alizarin red staining. Conclusion: The present study provided evidence that BZF and FBA can increase BMD, suggesting their potential effects in preventing and treating OP. These findings potentially pave the way for future studies that may allow personalized selection of lipid-lowering drugs for those at risk of OP.

13.
Int J Stem Cells ; 16(3): 342-355, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105556

RESUMO

Background and Objectives: Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results: To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions: Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.

14.
Am J Hum Genet ; 84(3): 418-23, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19268274

RESUMO

Low lean body mass (LBM) is related to a series of health problems, such as osteoporotic fracture and sarcopenia. Here we report a genome-wide association (GWA) study on LBM variation, by using Affymetrix 500K single-nucleotide polymorphism (SNP) arrays. In the GWA scan, we tested 379,319 eligible SNPs in 1,000 unrelated US whites and found that two SNPs, rs16892496 (p = 7.55 x 10(-8)) and rs7832552 (p = 7.58 x 10(-8)), within the thyrotropin-releasing hormone receptor (TRHR) gene were significantly associated with LBM. Subjects carrying unfavorable genotypes at rs16892496 and rs7832552 had, on average, 2.70 and 2.55 kg lower LBM, respectively, compared to those with alternative genotypes. We replicated the significant associations in three independent samples: (1) 1488 unrelated US whites, (2) 2955 Chinese unrelated subjects, and (3) 593 nuclear families comprising 1972 US whites. Meta-analyses of the GWA scan and the replication studies yielded p values of 5.53 x 10(-9) for rs16892496 and 3.88 x 10(-10) for rs7832552. In addition, we found significant interactions between rs16892496 and polymorphisms of several other genes involved in the hypothalamic-pituitary-thyroid and the growth hormone-insulin-like growth factor-I axes. Results of this study, together with the functional relevance of TRHR in muscle metabolism, support the TRHR gene as an important gene for LBM variation.


Assuntos
Composição Corporal/genética , Peso Corporal/genética , Receptores do Hormônio Liberador da Tireotropina/genética , Adulto , Idoso , Asiático , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Magreza , População Branca
15.
Am J Hum Genet ; 84(3): 388-98, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19249006

RESUMO

To identify and validate genes associated with bone mineral density (BMD), which is a prominent osteoporosis risk factor, we tested 379,319 SNPs in 1000 unrelated white U.S. subjects for associations with BMD. For replication, we genotyped the most significant SNPs in 593 white U.S. families (1972 subjects), a Chinese hip fracture (HF) sample (350 cases, 350 controls), a Chinese BMD sample (2955 subjects), and a Tobago cohort of African ancestry (908 males). Publicly available Framingham genome-wide association study (GWAS) data (2953 whites) were also used for in silico replication. The GWAS detected two BMD candidate genes, ADAMTS18 (ADAM metallopeptidase with thrombospondin type 1 motif, 18) and TGFBR3 (transforming growth factor, beta receptor III). Replication studies verified the significant findings by GWAS. We also detected significant associations with hip fracture for ADAMTS18 SNPs in the Chinese HF sample. Meta-analyses supported the significant associations of ADAMTS18 and TGFBR3 with BMD (p values: 2.56 x 10(-5) to 2.13 x 10(-8); total sample size: n = 5925 to 9828). Electrophoretic mobility shift assay suggested that the minor allele of one significant ADAMTS18 SNP might promote binding of the TEL2 factor, which may repress ADAMTS18 expression. The data from NCBI GEO expression profiles also showed that ADAMTS18 and TGFBR3 genes were differentially expressed in subjects with normal skeletal fracture versus subjects with nonunion skeletal fracture. Overall, the evidence supports that ADAMTS18 and TGFBR3 might underlie BMD determination in the major human ethnic groups.


Assuntos
Proteínas ADAM/genética , Povo Asiático , População Negra , Densidade Óssea/genética , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , População Branca , Proteínas ADAMTS , Adulto , Idoso , Bases de Dados Genéticas , Feminino , Seguimentos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fraturas do Quadril/etnologia , Fraturas do Quadril/etiologia , Fraturas do Quadril/genética , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/complicações , Osteoporose/etnologia , Osteoporose/genética , Polimorfismo de Nucleotídeo Único , Adulto Jovem
16.
PLoS Genet ; 5(3): e1000420, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19282985

RESUMO

For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects--all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09 x 10(-3) and 4.37 x 10(-3), respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19 x 10(-5) and 1.02 x 10(-4), respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM.


Assuntos
Estudo de Associação Genômica Ampla , Menarca/genética , Proteoglicanas/genética , Adulto , Fatores Etários , Envelhecimento/genética , Feminino , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
17.
Neuropsychopharmacology ; 47(10): 1791-1797, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35094024

RESUMO

Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. Genome-wide association studies (GWAS) have identified ~30 AUD risk genes in European populations, but many fewer in East Asians. We conducted GWAS and genome-wide meta-analysis of AUD in 13,551 subjects with East Asian ancestry, using published summary data and newly genotyped data from five cohorts: (1) electronic health record (EHR)-diagnosed AUD in the Million Veteran Program (MVP) sample; (2) DSM-IV diagnosed alcohol dependence (AD) in a Han Chinese-GSA (array) cohort; (3) AD in a Han Chinese-Cyto (array) cohort; and (4) two AD Thai cohorts. The MVP and Thai samples included newly genotyped subjects from ongoing recruitment. In total, 2254 cases and 11,297 controls were analyzed. An AUD polygenic risk score was analyzed in an independent sample with 4464 East Asians (Genetic Epidemiology Research in Adult Health and Aging (GERA)). Phenotypes from survey data and ICD-9-CM diagnoses were tested for association with the AUD PRS. Two risk loci were detected: the well-known functional variant rs1229984 in ADH1B and rs3782886 in BRAP (near the ALDH2 gene locus) are the lead variants. AUD PRS was significantly associated with days per week of alcohol consumption (beta = 0.43, SE = 0.067, p = 2.47 × 10-10) and nominally associated with pack years of smoking (beta = 0.09, SE = 0.05, p = 4.52 × 10-2) and ever vs. never smoking (beta = 0.06, SE = 0.02, p = 1.14 × 10-2). This is the largest GWAS of AUD in East Asians to date. Building on previous findings, we were able to analyze pleiotropy, but did not identify any new risk regions, underscoring the importance of recruiting additional East Asian subjects for alcohol GWAS.


Assuntos
Alcoolismo , Álcool Desidrogenase/genética , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/epidemiologia , Alcoolismo/genética , Aldeído-Desidrogenase Mitocondrial/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética
18.
Front Biosci (Landmark Ed) ; 27(10): 295, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36336853

RESUMO

BACKGROUND: Recently, single-cell RNA sequencing (scRNA-seq) technology was increasingly used to study transcriptomics at a single-cell resolution, scRNA-seq analysis was complicated by the "dropout", where the data only captures a small fraction of the transcriptome. This phenomenon can lead to the fact that the actual expressed transcript may not be detected. We previously performed osteoblast subtypes classification and dissection on freshly isolated human osteoblasts. MATERIALS AND METHODS: Here, we used the scImpute method to impute the missing values of dropout genes from a scRNA-seq dataset generated on freshly isolated human osteoblasts. RESULTS: Based on the imputed gene expression patterns, we discovered three new osteoblast subtypes. Specifically, these newfound osteoblast subtypes are osteoblast progenitors, and two undetermined osteoblasts. Osteoblast progenitors showed significantly high expression of proliferation related genes (FOS, JUN, JUNB and JUND). Analysis of each subtype showed that in addition to bone formation, these undetermined osteoblasts may involve osteoclast and adipocyte differentiation and have the potential function of regulate immune activation. CONCLUSIONS: Our findings provided a new perspective for studying the osteoblast heterogeneity and potential biological functions of these freshly isolated human osteoblasts at the single-cell level, which provides further insight into osteoblasts subtypes under various (pathological) physiological conditions.


Assuntos
Osteoblastos , Transcriptoma , Humanos , RNA-Seq , Osteoblastos/metabolismo , Diferenciação Celular/genética , Osteogênese/genética , Perfilação da Expressão Gênica
19.
Hum Mol Genet ; 18(9): 1661-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19039035

RESUMO

Human stature, as an important physical index in clinical practice and a usual covariate in gene mapping of complex disorders, is a highly heritable complex trait. To identify specific genes underlying stature, a genome-wide association study was performed in 1000 unrelated homogeneous Caucasian subjects using Affymetrix 500K arrays. A group of seven contiguous markers in the region of SBF2 gene (Set-binding factor 2) are associated with stature, significantly so at the genome-wide level after false discovery rate (FDR) correction (FDR q = 0.034-0.042). Three SNPs in another SNP group in the Filamin B (FLNB) gene were also associated with stature, significantly so with FDR q = 0.042-0.048. In follow-up independent replication studies, rs10734652 in the SBF2 gene was significantly (P = 0.036) and suggestively (P = 0.07) associated with stature in Caucasian families and 1306 unrelated Caucasian subjects, respectively, and rs9834312 in the FLNB gene was also associated with stature in such two independent Caucasian populations (P = 0.008 in unrelated sample and P = 0.049 in family sample). Particularly, additional significant replication association signals were detected in Chinese, an ethnic population different from Caucasian, between rs9834312 and stature in 619 unrelated northern Chinese subjects (P = 0.017), as well as between rs10734652 and stature in 2953 unrelated southern Chinese subjects (P = 0.048). This study also provides additional replication evidence for some of the already published stature loci. These results, together with the known functional relevance of the SBF2 and FLNB genes to skeletal linear growth and bone formation, support that two regions containing FLNB and SBF2 genes are two novel loci underlying stature variation.


Assuntos
Estatura , Proteínas Contráteis/genética , Proteínas dos Microfilamentos/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adulto , Idoso , Povo Asiático/etnologia , Povo Asiático/genética , Feminino , Filaminas , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
20.
Am J Hum Genet ; 83(6): 663-74, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18992858

RESUMO

Osteoporosis, a highly heritable disease, is characterized mainly by low bone-mineral density (BMD), poor bone geometry, and/or osteoporotic fractures (OF). Copy-number variation (CNV) has been shown to be associated with complex human diseases. The contribution of CNV to osteoporosis has not been determined yet. We conducted case-control genome-wide CNV analyses, using the Affymetrix 500K Array Set, in 700 elderly Chinese individuals comprising 350 cases with homogeneous hip OF and 350 matched controls. We constructed a genomic map containing 727 CNV regions in Chinese individuals. We found that CNV 4q13.2 was strongly associated with OF (p = 2.0 x 10(-4), Bonferroni-corrected p = 0.02, odds ratio = 1.73). Validation experiments using PCR and electrophoresis, as well as real-time PCR, further identified a deletion variant of UGT2B17 in CNV 4q13.2. Importantly, the association between CNV of UGT2B17 and OF was successfully replicated in an independent Chinese sample containing 399 cases with hip OF and 400 controls. We further examined this CNV's relevance to major risk factors for OF (i.e., hip BMD and femoral-neck bone geometry) in both Chinese (689 subjects) and white (1000 subjects) samples and found consistently significant results (p = 5.0 x 10(-4) -0.021). Because UGT2B17 encodes an enzyme catabolizing steroid hormones, we measured the concentrations of serum testosterone and estradiol for 236 young Chinese males and assessed their UGT2B17 copy number. Subjects without UGT2B17 had significantly higher concentrations of testosterone and estradiol. Our findings suggest the important contribution of CNV of UGT2B17 to the pathogenesis of osteoporosis.


Assuntos
Dosagem de Genes , Predisposição Genética para Doença , Genoma Humano , Glucuronosiltransferase/genética , Osteoporose/genética , Adulto , Idoso , Povo Asiático/genética , Densidade Óssea/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 4 , Estradiol/sangue , Feminino , Deleção de Genes , Marcadores Genéticos , Variação Genética , Fraturas do Quadril/genética , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Testosterona/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA