Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 177, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783194

RESUMO

BACKGROUND: Clostridioides difficile is the main pathogen of antimicrobial-associated diarrhoea and health care facility-associated infectious diarrhoea. This study aimed to investigate the prevalence, toxin genotypes, and antibiotic resistance of C. difficile among hospitalized patients in Xi'an, China. RESULTS: We isolated and cultured 156 strains of C. difficile, representing 12.67% of the 1231 inpatient stool samples collected. Among the isolates, tcdA + B + strains were predominant, accounting for 78.2% (122/156), followed by 27 tcdA-B + strains (27/156, 17.3%) and 6 binary toxin gene-positive strains. The positive rates of three regulatory genes, tcdC, tcdR, and tcdE, were 89.1% (139/156), 96.8% (151/156), and 100%, respectively. All isolates were sensitive to metronidazole, and the resistance rates to clindamycin and cephalosporins were also high. Six strains were found to be resistant to vancomycin. CONCLUSION: Currently, the prevalence rate of C. difficile infection (CDI) in Xi'an is 12.67% (156/1231), with the major toxin genotype of the isolates being tcdA + tcdB + cdtA-/B-. Metronidazole and vancomycin were still effective drugs for the treatment of CDI, but we should pay attention to antibiotic management and epidemiological surveillance of CDI.


Assuntos
Antibacterianos , Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Fezes , Genótipo , Hospitais , Clostridioides difficile/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/classificação , Humanos , China/epidemiologia , Antibacterianos/farmacologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Toxinas Bacterianas/genética , Hospitais/estatística & dados numéricos , Fezes/microbiologia , Farmacorresistência Bacteriana/genética , Prevalência , Testes de Sensibilidade Microbiana , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Proteínas de Bactérias/genética , Diarreia/microbiologia , Diarreia/epidemiologia , Metronidazol/farmacologia , Adulto Jovem , Enterotoxinas/genética , Adolescente , Vancomicina/farmacologia , Clindamicina/farmacologia , Idoso de 80 Anos ou mais
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256016

RESUMO

Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique in conjunction with Ingenuity pathway analysis (IPA) to probe the putative molecular mechanisms of METH sensitization through miR-29c-3p inhibition. Through a microinjection of AAV-anti-miR-29c-3p into the nucleus accumbens (NAc) of mice, we observed the attenuation of METH-induced locomotor effects. Subsequent iTRAQ analysis identified 70 differentially expressed proteins (DEPs), with 22 up-regulated potential target proteins identified through miR-29c-3p target gene prediction and IPA analysis. Our focus extended to the number of neuronal branches, the excitatory synapse count, and locomotion-related pathways. Notably, GPR37, NPC1, and IREB2 emerged as potential target molecules for miR-29c-3p regulation, suggesting their involvement in the modulation of METH sensitization. Quantitative PCR confirmed the METH-induced aberrant expression of Gpr37, Npc1, and Ireb2 in the NAc of mice. Specifically, the over-expression of miR-29c-3p led to a significant reduction in the mRNA level of Gpr37, while the inhibition of miR-29c-3p resulted in a significant increase in the mRNA level of Gpr37, consistent with the regulatory principle of miRNAs modulating target gene expression. This suggests that miR-29c-3p potentially influences METH sensitization through its regulation of neuroplasticity. Our research indicates that miR-29c-3p plays a crucial role in regulating METH-induced sensitization, and it identified the potential molecular of miR-29c-3p in regulating METH-induced sensitization.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , MicroRNAs , Doença de Niemann-Pick Tipo C , Animais , Camundongos , Núcleo Accumbens , Metanfetamina/farmacologia , MicroRNAs/genética , Plasticidade Neuronal/genética , RNA Mensageiro , Receptores Acoplados a Proteínas G
3.
Curr Microbiol ; 80(12): 378, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861738

RESUMO

Endophthalmitis is an acute inflammatory intraocular condition that can cause permanent vision loss. The treatment strategy and visual outcome partly depend on the identification of the agents of pathogens. In this study, metagenomic sequencing was conducted to investigate the microbial and antibiotic resistance genes (ARGs) composition in the vitreous (intraocular body fluid) of an endophthalmitis patient, who progressed rapidly and accompanied by severe pain. Metagenomic sequencing data revealed that the vitreous sample was predominated by Streptococcus, with a low-diversity microbiome in the vitreous. This strain harbor's the ARGs mainly against beta-lactam, macrolide-lincosamide-streptogramin, and multidrug. Additionally, metagenome-assembled genome sequence of Streptococcus sp. v1. nov. was identified. The Tetra Correlation Search (TCS) analysis uncovered that the closest relative of the Streptococcus sp. v1. nov. was Streptococcus mitis SK321. Pan/core genome analysis for Streptococcus sp. v1. nov. and TCS top 25 hits strains revealed that most unique genes of Streptococcus sp. v1. nov. were linked to ATP-binding cassette transport system, which could indicate unique virulence and pathogenic potentials of Streptococcus sp. v1. nov. In addition, a total of 7 virulence factors were identified, and the overwhelming of them were classified into "offensive virulence factors". The high pathogenicity of Streptococcus sp. v1. nov. could be a reason for the patient's rapid disease progression. Our study was first isolated an ocular pathogen with highly virulent based on metagenomic sequencing and bioinformatics analysis, which has important reference value for revealing the composition and genome characteristics of pathogens in endophthalmitis patient in the future.


Assuntos
Endoftalmite , Streptococcus , Humanos , Streptococcus/genética , Streptococcus mitis , Genômica , Fatores de Virulência/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética
4.
Immunology ; 166(3): 408-423, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35420160

RESUMO

Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in the cytoplasm, which, in turn, induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signalling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.


Assuntos
DNA Mitocondrial , Nucleotidiltransferases/metabolismo , Infecções por Pseudomonas , Animais , Citocinas/metabolismo , DNA Mitocondrial/genética , Imunidade Inata , Camundongos , Nucleotidiltransferases/genética , Pseudomonas/genética , Pseudomonas/metabolismo
5.
J Neuroinflammation ; 19(1): 318, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581897

RESUMO

BACKGROUND: Neuroinflammation in the nucleus accumbens (NAc) is well known to influence the progression of depression. However, the molecular mechanisms triggering NAc neuroinflammation in depression have not been fully elucidated. Progranulin (PGRN) is a multifunctional growth factor that is linked to the innate immune response and inflammation, and PGRN plays a key role in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, the purpose of this study was to validate whether PGRN was involved in the NAc neuroinflammation-promoted depressive-like phenotype. METHODS: A NAc neuroinflammation-relevant depression-like model was established using wild-type (WT) and PGRN-knockout (KO) mice after NAc injection with lipopolysaccharide (LPS), and various behavioral tests related to cognition, social recognition, depression and anxiety were performed with WT and PGRNKO mice with or without NAc immune challenge. RT‒PCR, ELISA, western blotting and immunofluorescence staining were used to determine the expression and function of PGRN in the neuroinflammatory reaction in the NAc after LPS challenge. The morphology of neurons in the NAc from WT and PGRNKO mice under conditions of NAc neuroinflammation was analyzed using Golgi-Cox staining, followed by Sholl analyses. The potential signaling pathways involved in NAc neuroinflammation in PGRNKO mice were investigated by western blotting. RESULTS: Under normal conditions, PGRN deficiency induced FTD-like behaviors in mice and astrocyte activation in the NAc, promoted the release of the inflammatory cytokines interleukin (IL)-6 and IL-10 and increased dendritic complexity and synaptic protein BDNF levels in the NAc. However, NAc neuroinflammation enhanced PGRN expression, which was located in astrocytes and microglia within the NAc, and PGRN deficiency in mice alleviated NAc neuroinflammation-elicited depression-like behaviors, seemingly inhibiting astrocyte- and microglia-related inflammatory reactions and neuroplasticity complexity in the NAc via the p38 and nuclear factor of kappa (NF-κB) signaling pathways present in the NAc after neuroinflammation. CONCLUSIONS: Our results suggest that PGRN exerts distinct function on different behaviors, showing protective roles in the FTD-like behavior and detrimental effects on the neuroinflammation-related depression-like behavior, resulting from mediating astrocyte and microglial functions from the NAc in different status.


Assuntos
Demência Frontotemporal , Doença de Pick , Camundongos , Animais , Progranulinas/metabolismo , Granulinas/metabolismo , Núcleo Accumbens/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Depressão , Microglia/metabolismo , Inflamação , Doença de Pick/metabolismo
6.
Brain Behav Immun ; 101: 165-179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971757

RESUMO

We recently reported that dopamine D3 receptor (D3R) was involved in inflammation-related depression. Nucleus accumbens (NAc) inflammation is implicated in the development and progression of depression, but its regulatory mechanism remains largely unknown. In a mouse model of NAc neuroinflammation induced by bilateral NAc injection of lipopolysaccharide (LPS), we observed that NAc neuroinflammation triggered depressive-like behaviors, and D3R expression decline and microglial activation in the NAc. A selective knockdown of D3R in the NAc elicited depressive-like behaviors, while re-expression of D3R in the NAc of global D3RKO mice alleviated depressive-like behaviors induced by D3R deficiency. D3R downregulation in the NAc shifted microglia toward a proinflammatory state, which was validated with cultured mouse microglial cultures. Further in vitro results demonstrated that D3R inhibition induced microglia to enter a proinflammatory state primarily through the Akt signaling pathway. In conclusion, our results suggest that D3R expression in the NAc may inhibit microglial proinflammatory responses in the NAc, thus alleviating NAc neuroinflammation and subsequent depressive-like behaviors through the Akt signaling pathway.


Assuntos
Depressão , Núcleo Accumbens , Receptores de Dopamina D3 , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Doenças Neuroinflamatórias , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D3/metabolismo
7.
Microb Pathog ; 155: 104922, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33932545

RESUMO

Acinetobacter baumannii is an important pathogen in clinical. The factors of biofilm formation, antibiotic resistance and motility contribute great to A. baumannii in persisting in stressed environment, and further leads to nosocomial infections. 70 A. baumannii clinical isolates were investigated for their clinical characteristics of infection. Among the tested strains, 54 (77.1%) isolates were obtained from ICUs, with the frequency of multidrug-resistance (MDR) at 55.7%, and that of extensively drug-resistance (XDR) at 31.4%. 97.1% of the clinical isolates could form biofilms, in which 4.3% possessed weak biofilm formation ability, while 41.4% and 51.4% were moderate and strong biofilm producers, respectively. A strong correlation between antibiotic resistance and biofilm formation ability was found that all the resistant strains could form biofilms, with the majority in moderate and strong levels, but 2.9% sensitive isolates had no such ability. However, the sensitive strains that could produce biofilms showed stronger biofilm formation capacity in the early stage before 24 h compared to the resistant isolates, though they became weaker afterwards. 24 biofilm-related genes and two blaOXA genes were found in both biofilm-forming and non-biofilm-forming strains, but with higher prevalence in the strains that could produce biofilms. No correlation was detected between twitching motility with antibiotic susceptibility or biofilm formation. These results raised a viewpoint that examining timepoint is a key factor for determining the biofilm formation ability, and further highlighted the importance of the appropriate surveillance and control measures in preventing the emergence and transmission of MDR and XDR A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Biofilmes , Farmacorresistência Bacteriana Múltipla/genética , Humanos
8.
Med Sci Monit ; 27: e928864, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33635854

RESUMO

BACKGROUND Although progranulin was recently proposed as an adipokine that may be involved in glucose metabolic and inflammatory diseases, the role of serum progranulin in cardiovascular disease is elusive and remains disputed. The aim of our research was to determine the concentration of serum progranulin in Chinese patients with cardiovascular disease, notably in acute myocardial infarction (AMI), and its relationship to other cardiometabolic risk factors. MATERIAL AND METHODS This prospective observational study included 342 Chinese AMI patients and 255 healthy control subjects. Serum progranulin concentrations and various cardiometabolic risk factor levels were investigated. We assessed the relationship between progranulin and other cardiometabolic risk factors. Logistic regression analysis was applied to evaluate risk factors in patients with AMI. RESULTS Progranulin levels were obviously elevated in AMI patients compared to control subjects (P=0.0001). Correlation analysis showed that progranulin levels were positively associated with coronary artery disease severity (r=0.380, P=0.0001), glucose (r=0.195, P=0.015), and myeloperoxidase (r=0.198, P=0.014). In logistic regression analysis, serum progranulin (Exp(B)=1.104, 95% CI=1.043-1.168, P=0.001), myeloperoxidase (Exp(B)=1.006, 95% CI=1.003-1.008, P=0.0001), and uric acid (Exp(B)=1.020, 95% CI=1.009-1.032, P=0.0001) were independent risk factors in AMI patients. CONCLUSIONS Patients with AMI had significantly higher serum progranulin concentrations than control subjects. This study suggests that serum progranulin is an independent risk predictor in Chinese patients with AMI.


Assuntos
Infarto do Miocárdio/sangue , Progranulinas/sangue , Idoso , Povo Asiático , Biomarcadores/sangue , Estudos de Casos e Controles , Doença da Artéria Coronariana/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco
9.
Brain Behav Immun ; 83: 226-238, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626970

RESUMO

We previously demonstrated that the dopamine D3 receptor (D3R) inhibitor, NGB2904, increases susceptibility to depressive-like symptoms, elevates pro-inflammatory cytokine expression, and alters brain-derived neurotrophic factor (BDNF) levels in mesolimbic dopaminergic regions, including the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) in mice. The mechanisms by which D3R inhibition affects neuroinflammation and onset of depression remain unclear. Here, using D3R-knockout (D3RKO) and congenic wild-type C56BL/6 (WT) mice, we demonstrated that D3RKO mice displayed depressive-like behaviors, increased tumornecrosisfactor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 levels, and altered BDNF expression in selected mesolimbic dopaminergic regions. D3R expression was localized to astrocytes or microglia in the mPFC, NAc, and VTA in WT mice. D3RKO mice exhibited a large number of Iba1-labelled microglia in the absence of glial fibrillary acidic protein (GFAP)-labelled astrocytes in mesolimbic dopaminergic brain areas. Inhibition or ablation of microglia by minocycline (25 mg/kg and 50 mg/kg) or PLX3397 (40 mg/kg) treatment ameliorated depressive-like symptoms, alterations in pro-inflammatory cytokine levels, and BDNF expression in the indicated brain regions in D3RKO mice. Minocycline therapy alleviated the increase in synaptic density in the NAc in D3RKO mice. These findings suggest that microglial activation in selected mesolimbic reward regions affects depressive-like behaviors induced by D3R deficiency.


Assuntos
Depressão/imunologia , Depressão/psicologia , Microglia/imunologia , Receptores de Dopamina D3/deficiência , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D3/genética , Recompensa , Área Tegmentar Ventral/metabolismo
10.
Neurochem Res ; 44(4): 947-958, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30659504

RESUMO

Dopamine (DA) is important in the maintenance of normal nervous system function. DA is the target of multiple drugs, and it induces critical alterations in immune cells. However, these impacts are controversial, and the mechanism remains unclear. In the present study, we treated BV-2 microglial cells and primary microglia with DA and measured the changes in cytokines. We also identified the expression of DA receptors (DRs) using confocal and immunofluorescent microscopy. Specific agonists and antagonists of D1-like DRs (D1DR and D5DR) were used to observe alterations in cytokines. Western blot and siRNA interference were performed to investigate the involvement of the downstream signaling molecules of DRs. We also measured changes in mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) signaling pathway and assessed their involvement using inhibitors. We found that DA alone produced no effects on IL-6, TNF-α or nitric oxide (NO) production, and it inhibited lipopolysaccharide (LPS)-induced NO in microglial cells. Microglia expressed a high abundance of D1-like DRs (D1DR and D5DR). The agonists inhibited NO production, and antagonists reversed the DA-induced suppression of NO. Adenylatec cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) mediated DA function, and cAMP-response element binding protein (CREB) was not involved. ERK1/2 and NF-κB, but not p-38 or JNK, played roles in DA-suppressed NO generation via altering inducible nitric oxide synthase (iNOS) transcription. These data illustrate that DA modulates LPS-induced NO production via the AC/cAMP-PKA-ERK1/2-NF-κB-iNOS axis in mouse microglia, and D1-like DRs are involved. The present study provides functional evidence for an essential role of DA in immunoregulation.


Assuntos
Dopamina/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Óxido Nítrico/biossíntese , Receptores de Dopamina D1/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Receptores de Dopamina D1/agonistas
11.
Addict Biol ; 24(3): 498-508, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29516602

RESUMO

microRNA (miRNA) play important roles in drug addiction and act as a post-transcriptional regulator of gene expression. We previously reported extensive downregulation of miRNAs in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice. However, the regulatory mechanism of this METH-induced downregulation of miRNAs has yet to be elucidated. Thus, we examined METH-induced changes in the expression of miRNAs and their precursors, as well as the expression levels of mRNA and the proteins involved in miRNA biogenesis such as Dicer1 and Ago2, in the nucleus accumbens of METH-induced locomotor sensitized mice. miRNAs and Ago2 were significantly downregulated, while the expression of miRNA precursors remained unchanged or upregulated, which suggests that the downregulation of miRNAs was likely due to a reduction in Ago2-mediated splicing but unlikely to be regulated at the transcription level. Interestingly, the expression level of Dicer1, which is a potential target of METH-induced decreased miRNAs, such as miR-124, miR-212 and miR-29b, was significantly increased. In conclusion, this study indicates that miRNA biogenesis (such as Ago2 and Dicer1) and their miRNA products may have a role in the development of METH addiction.


Assuntos
Proteínas Argonautas/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , RNA Helicases DEAD-box/fisiologia , Locomoção/efeitos dos fármacos , Metanfetamina/farmacologia , MicroRNAs/metabolismo , Ribonuclease III/fisiologia , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos
12.
Int J Neuropsychopharmacol ; 21(5): 448-460, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390063

RESUMO

Background: The altered expression and function of dopamine receptor D3 (D3R) in patients and animal models have been correlated with depression disease severity. However, the morphological alterations and biological effects of D3R in the brain after inflammation-induced depressive-like behavior remain elusive. Methods: In the present study, we ascertained the changes of D3R expression in the brain regions after depressive-like behavior induced by peripheral administration of lipopolysaccharide (LPS). Protein levels of proinflammatory cytokines, brain-derived neurotrophic factor (BDNF), and extracellular signal-regulated kinase (ERK1/2)-cAMP-response element-binding protein (CREB) signaling pathway after activation or inhibition of D3R in the brain of depressive mice were also investigated. Results: LPS caused a significant reduction of D3R in the ventral tegmental area (VTA), medial prefrontal cortex (mPFC), and nucleus accumbens (NAc), which are areas related to the mesolimbic dopaminergic system. Pretreatment with pramipexole (PPX), a preferential D3R agonist, showed antidepressant effects on LPS-induced depression-like behavior through preventing changes in LPS-induced proinflammatory cytokines (tumour necrosis factor-α, interleukin-1ß, and interleukin-6), BDNF, and ERK1/2-CREB signaling pathway in the VTA and NAc. In opposition, treatment with a D3R selective antagonist NGB 2904 alone made mice susceptible to depression-like effects and caused changes in accordance with the LPS-induced alterations in proinflammatory cytokines, BDNF, and the ERK1/2-CREB signaling pathway in the mPFC and NAc. Conclusions: These findings provide a relevant mechanism for D3R in LPS-induced depressive-like behavior via its mediation of proinflammatory cytokines and potential cross-effects between BDNF and the ERK1/2-CREB signaling pathway.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Depressão , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Lipopolissacarídeos/farmacologia , Receptores de Dopamina D3/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/imunologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Agonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Fluorenos/farmacologia , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Piperazinas/farmacologia , Pramipexol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
13.
J Neurosci Res ; 95(4): 1044-1052, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27426635

RESUMO

Previous studies demonstrated that histone acetylation modulated the transcription of associated gene expression and thus contributed to the persistence of addictive behaviors and neuroplasticity. Nonetheless, the roles of histone acetylation in distinct phases of methamphetamine (METH)-induced conditioned place preference (CPP) remain unclear. The current study examines the effects of the histone deacetylases (HDACs) inhibitor sodium butyrate (NaB) on the acquisition, extinction, and reinstatement of METH-induced CPP in mice. Our results showed that 1 mg/kg METH induced CPP in mice after four conditioning sessions. METH-induced CPP was extinguished after three extinction training sessions and could be triggered by the same dose (1 mg/kg) of METH on the reinstatement test day. Meanwhile, NaB (400 mg/kg) per se had no effect on the natural preference of mice, but injections of NaB during the conditioning and extinction phases facilitated the acquisition and extinction of METH-induced CPP, respectively. Additionally, although the effect of a single NaB injection prior to the trigger of CPP reinstatement was not observed, repeated NaB injections during the extinction phase totally blocked the reinstatement of METH-induced CPP. Taken together, our results suggested a specific effect of histone acetylation on modulating distinct phases of METH-induced CPP and that treatment of NaB during the extinction phase not only produced beneficial effects on eliminating already established CPP but also blocked the reinstatement of METH-induced CPP. © 2016 Wiley Periodicals, Inc.


Assuntos
Ácido Butírico/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/farmacologia , Metanfetamina/farmacologia , Animais , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reforço Psicológico
14.
J Neurosci Res ; 93(10): 1600-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26031216

RESUMO

MicroRNAs (miRNAs) are modulators of gene expression that play key regulatory roles in distinct cellular processes. Methamphetamine (METH) induces various aberrant changes in the limbic system by affecting a complex gene regulatory mechanism, yet the involvement of miRNAs in the effects of METH exposure remains unclear. This study identifies METH-responsive miRNAs and their potential effects in the nucleus accumbens (NAc) of mice. Using miRNA sequencing, we examined the expression of miRNAs in the NAc of saline- and METH-treated mice and identified 45 known miRNAs to be METH responsive. Additionally, we identified two novel miRNA candidates that were METH responsive (novel-m002C and novel-m009C). Our target prediction analysis suggested that the known METH-regulated miRNAs might target genes that are involved in cellular autophagy, cellular metabolism, and immune responses and that the novel METH-regulated miRNA candidates might target genes that are related to drug addiction. We also matched the predicted targets of METH-regulated miRNAs with the NAc messenger RNA expression profile, revealing eight putative METH-regulated target genes (Arc, Capn9, Gbp5, Lefty1, Patl2, Pde4c, Strc, and Vmn1r58). Thus, METH triggers an alteration in NAc miRNA expression, which could contribute to METH-induced changes in neuron autophagy, metabolism, and immune responses. The differential expression of putative target genes suggests their involvement following exposure to METH.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metanfetamina/farmacologia , MicroRNAs/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Genoma/efeitos dos fármacos , Genoma/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estatísticas não Paramétricas , Transcriptoma
15.
BMC Neurosci ; 16: 18, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25884509

RESUMO

BACKGROUND: Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. RESULTS: Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction. CONCLUSIONS: Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , RNA Longo não Codificante/metabolismo , Acatisia Induzida por Medicamentos/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Regulação para Cima/efeitos dos fármacos
16.
Front Microbiol ; 15: 1392134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741738

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been recognized in hospitals, community and livestock animals and the epidemiology of MRSA is undergoing a major evolution among humans and animals in the last decade. This study investigated the prevalence of MRSA isolates from ground pork, retail whole chicken, and patient samples in Hanzhong, China. The further characterization was performed by antimicrobial susceptibility testing and in-depth genome-based analysis to identify the resistant determinants and their phylogenetic relationship. A total of 93 MRSA isolates were recovered from patients (n = 67) and retail livestock products (n = 26) in Hanzhong, China. 83.9% (78/93) MRSA isolates showed multiple drug resistant phenotype. Three dominant livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence types were identified: ST59-t437 (n = 47), ST9-t899 (n = 10) and ST398 (n = 7). There was a wide variation among sequence types in the distribution of tetracycline-resistance, scn-negative livestock markers and virulence genes. A previous major human MRSA ST59 became the predominant interspecies MRSA sequence type among humans and retail livestock products. A few LA-MRSA isolates from patients and livestock products showed close genetic similarity. The spreading of MRSA ST59 among livestock products deserving special attention and active surveillance should be enacted for the further epidemic spread of MRSA ST59 in China. Data generated from this study will contribute to formulation of new strategies for combating spread of MRSA.

17.
Antibiotics (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830106

RESUMO

Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.

18.
Front Microbiol ; 14: 1185450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520356

RESUMO

The modified carbapenem inactivation method (mCIM) recommended by the Clinical and Laboratory Standards Institute is not applicable for detecting carbapenemases in Acinetobacter baumannii. Four currently reported phenotypic detection methods, namely, the modified Hodge test, the mCIM, the adjusted mCIM, and the simplified carbapenem inactivation method (sCIM), did not perform well in our 90 clinical A. baumannii isolates. Thus, the minimal inhibitory concentrations (MICs) of carbapenems and the existence and expression of carbapenemase-encoding genes were detected to explain the results. According to the E-test, which was more accurate than the VITEK 2 system, 80.0 and 41.1% were resistant to imipenem (IPM) and meropenem (MEM), respectively, and 14.4 and 53.3% exhibited intermediate resistance, respectively. Five ß-lactamase genes were found, of which blaOXA-51-like, blaTEM, and blaOXA-23-like were detected more frequently in 85 non-susceptible strains. The expression of blaOXA-23-like was positively correlated with the MIC values of IPM and MEM. Therefore, an improved approach based on the mCIM, designated the optimized CIM (oCIM), was developed in this study to detect carbapenemases more accurately and reproducibly. The condition was improved by evaluating the factors of A. baumannii inoculum, incubation broth volume, and MEM disk incubation time. Obvious high sensitivity (92.94%) and specificity (100.00%) were obtained using the oCIM, which was cost-effective and reproducible in routine laboratory work.

19.
Microbiol Spectr ; : e0461422, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920192

RESUMO

Acinetobacter baumannii is a critical biofilm-forming pathogen that has presented great challenges in the clinic due to multidrug resistance. Thus, new methods of intervention are needed to control biofilm-associated infections. In this study, among three tested Lactobacillus species, Lactobacillus rhamnosus showed significant antimaturation and antiadherence effects against A. baumannii biofilm. Lactic acid (LA) and acetic acid (AA) were the most effective antibiofilm biosurfactants (BSs) produced by L. rhamnosus. This antibiofilm phenomenon produced by LA and AA was due to the strong bactericidal effect, which worked from very early time points, as determined by colony enumeration and confocal laser scanning microscope. The cell destruction of A. baumannii appeared in both the cell envelope and cytoplasm. A discontinuous cell envelope, the leakage of cell contents, and the increased extracellular activity of ATPase demonstrated the disruption of the cell membrane by LA and AA. These effects also demonstrated the occurrence of protein lysis. In addition, bacterial DNA interacted with and was damaged by LA and AA, resulting in significantly reduced expression of biofilm and DNA repair genes. The results highlight the possibility and importance of using probiotics in clinical prevention. Probiotics can be utilized as novel biocides to block and decrease biofilm formation and microbial contamination in medical equipment and during the treatment of infections. IMPORTANCE A. baumannii biofilm is a significant virulence factor that causes the biofilm colonization of invasive illnesses. Rising bacterial resistance to synthetic antimicrobials has prompted researchers to look at natural alternatives, such as probiotics and their derivatives. In this study, L. rhamnosus and its BSs (LA and AA) demonstrated remarkable antibiofilm and antimicrobial characteristics, with a significant inhibitory effect on A. baumannii. These effects were achieved by several mechanisms, including the disruption of the cell envelope membrane, protein lysis, reduced expression of biofilm-related genes, and destruction of bacterial DNA. The results provide support for the possibility of using probiotics and their derivatives in the clinical prevention and therapy of A. baumannii infections.

20.
J Neurosci Res ; 90(4): 895-904, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22420045

RESUMO

Persistent changes in behavior and psychological function that occur as a consequence of exposure to drugs of abuse are thought to be mediated by the structural plasticity of specific neural circuits such as the brain's dopamine (DA) system. Changes in dendritic morphology in the nucleus accumbens (NAc) accompany drug-induced enduring behavioral and molecular changes, yet ultrastructural changes in synapses following repeated exposure to drugs have not been well studied. The current study examines the role of DA D3 receptors in modulating locomotor activity induced by both acute and repeated methamphetamine (METH) administration and accompanying ultrastructural plasticity in the shell of NAc in mice. We found that D3 receptor mutant (D3−/−) mice exhibited attenuated acute locomotor responses as well as the development of behavioral sensitization to METH compared with wild-type mice. In the absence of obvious neurotoxic effects, METH induced similar increases in synaptic density in the shell of NAc in both wild-type and D3−/− mice. These results suggest that D3 receptors modulate locomotor responses to both acute and repeated METH treatment. In contrast, the D3 receptor is not obviously involved in modulating baseline or METH-induced ultrastructural changes in the NAc shell.


Assuntos
Inibidores da Captação de Dopamina/farmacologia , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Neurônios/ultraestrutura , Núcleo Accumbens/efeitos dos fármacos , Receptores de Dopamina D3/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Esquema de Medicação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Receptores de Dopamina D3/deficiência , Coloração pela Prata , Sinapses/efeitos dos fármacos , Sinapses/genética , Sinapses/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA