RESUMO
Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.
Assuntos
Cálcio/metabolismo , Células Cromafins/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Bovinos , Sistema Livre de Células , Células Cromafins/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletrofisiologia/métodos , Lisofosfolipídeos/administração & dosagem , Lisofosfolipídeos/farmacologia , Células PC12 , Ratos , Esfingosina/administração & dosagem , Esfingosina/metabolismo , Esfingosina/farmacologiaRESUMO
BACKGROUND: The type VI adenylyl cyclase (AC6) is a main contributor of cAMP production in the heart. The amino acid (aa) sequence of AC6 is highly homologous to that of another major cardiac adenylyl cyclase, AC5, except for its N-terminus (AC6-N, aa 1-86). Activation of AC6, rather than AC5, produces cardioprotective effects against heart failure, while the underlying mechanism remains to be unveiled. Using an AC6-null (AC6-/-) mouse and a knockin mouse with AC6-N deletion (AC6 ΔN/ΔN), we aimed to investigate the cardioprotective mechanism of AC6 in the heart. METHODS: Western blot analysis and immunofluorescence staining were performed to determine the intracellular distribution of AC6, AC6-ΔN (a truncated AC6 lacking the first 86 amino acids), and STAT3 activation. Activities of AC6 and AC6-ΔN in the heart were assessed by cAMP assay. Apoptosis of cardiomyocytes were evaluated by the TUNEL assay and a propidium iodine-based survival assay. Fibrosis was examined by collagen staining. RESULTS: Immunofluorescence staining revealed that cardiac AC6 was mainly anchored on the sarcolemmal membranes, while AC6-ΔN was redistributed to the sarcoplasmic reticulum. AC6ΔN/ΔN and AC6-/- mice had more apoptotic myocytes and cardiac remodeling than WT mice in experimental models of isoproterenol (ISO)-induced myocardial injury. Adult cardiomyocytes isolated from AC6ΔN/ΔN or AC6-/- mice survived poorly after exposure to ISO, which produced no effect on WT cardiomyocytes under the condition tested. Importantly, ISO treatment induced cardiac STAT3 phosphorylation/activation in WT mice, but not in AC6ΔN/ΔN and AC6-/- mice. Pharmacological blockage of PKA-, Src-, or STAT3- pathway markedly reduced the survival of WT myocytes in the presence of ISO, but did not affect those of AC6ΔN/ΔN and AC6-/- myocytes, suggesting an important role of AC6 in mediating cardioprotective action through the activation of PKA-Src-STAT3-signaling. CONCLUSIONS: Collectively, AC6-N controls the anchorage of cardiac AC6 on the sarcolemmal membrane, which enables the coupling of AC6 with the pro-survival PKA-STAT3 pathway. Our findings may facilitate the development of novel therapies for heart failure.
Assuntos
Adenilil Ciclases/genética , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
The Cav3.2 T-type calcium channel is implicated in various pathological conditions, including cardiac hypertrophy, epilepsy, autism, and chronic pain. Phosphorylation of Cav3.2 by multiple kinases plays a pivotal role in regulating its calcium channel function. The calcium/calmodulin-dependent serine/threonine phosphatase, calcineurin, interacts physically with Cav3.2 and modulates its activity. However, it remains unclear whether calcineurin dephosphorylates Cav3.2, the specific spatial regions on Cav3.2 involved, and the extent of the quantitative impact. In this study, we elucidated the serine/threonine residues on Cav3.2 targeted by calcineurin using quantitative mass spectrometry. We identified six serine residues in the N-terminus, II-III loop, and C-terminus of Cav3.2 that were dephosphorylated by calcineurin. Notably, a higher level of dephosphorylation was observed in the Cav3.2 C-terminus, where calcineurin binds to this channel. Additionally, a previously known CaMKII-phosphorylated site, S1198, was found to be dephosphorylated by calcineurin. Furthermore, we also discovered that a novel CaMKII-phosphorylated site, S2137, underwent dephosphorylation by calcineurin. In CAD cells, a mouse central nervous system cell line, membrane depolarization led to an increase in the phosphorylation of endogenous Cav3.2 at S2137. Mutation of S2137 affected the calcium channel function of Cav3.2. Our findings advance the understanding of Cav3.2 regulation not only through kinase phosphorylation but also via calcineurin phosphatase dephosphorylation.
RESUMO
Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we employed our spider venom library and uncovered that Avicularia spec. ("Amazonas Purple", Peru) tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major peak in the venom. Both native (4.1 µM) and synthetic ω-Avsp1a (10 µM) inhibited 90% of CaV3.1 and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our results suggest that domain-1 of CaV3.3 is important for the inhibitory effect of ω-Avsp1a on T-type calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the inhibitory effect of ω-Avsp1a.
RESUMO
Treatments for chronic musculoskeletal pain, such as lower back pain, fibromyalgia, and myofascial pain syndrome, remain inadequate because of our poor understanding of the mechanisms that underlie these conditions. Although T-type Ca2+ channels (T-channels) have been implicated in peripheral and central pain sensory pathways, their role in chronic musculoskeletal pain is still unclear. Here, we show that acid-induced chronic mechanical hyperalgesia develops in Ca(v)3.1-deficient and wild-type but not in Ca(v)3.2-deficient male and female mice. We also show that T-channels are required for the initiation, but not maintenance, of acid-induced chronic muscle pain. Blocking T-channels using ethosuximide prevented chronic mechanical hyperalgesia in wild-type mice when administered intraperitoneally or intracerebroventricularly, but not intramuscularly or intrathecally. Furthermore, we found an acid-induced, Ca(v)3.2 T-channel-dependent activation of ERK (extracellular signal-regulated kinase) in the anterior nucleus of paraventricular thalamus (PVA), and prevention of the ERK activation abolished the chronic mechanical hyperalgesia. Our findings suggest that Ca(v)3.2 T-channel-dependent activation of ERK in PVA is required for the development of acid-induced chronic mechanical hyperalgesia.
Assuntos
Canais de Cálcio Tipo T/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/metabolismo , Músculo Esquelético/metabolismo , Dor/metabolismo , Tálamo/metabolismo , Análise de Variância , Animais , Canais de Cálcio Tipo T/genética , Feminino , Hiperalgesia/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiopatologia , Dor/fisiopatologia , Medição da Dor , Limiar da Dor/fisiologiaRESUMO
Voltage-gated T-type Ca(2+) channels (T-channels) are normally expressed during embryonic development in ventricular myocytes but are undetectable in adult ventricular myocytes. Interestingly, T-channels are reexpressed in hypertrophied or failing hearts. It is unclear whether T-channels play a role in the pathogenesis of cardiomyopathy and what the mechanism might be. Here we show that the alpha(1H) voltage-gated T-type Ca(2+) channel (Ca(v)3.2) is involved in the pathogenesis of cardiac hypertrophy via the activation of calcineurin/nuclear factor of activated T cells (NFAT) pathway. Specifically, pressure overload-induced hypertrophy was severely suppressed in mice deficient for Ca(v)3.2 (Ca(v)3.2(-/-)) but not in mice deficient for Ca(v)3.1 (Ca(v)3.1(-/-)). Angiotensin II-induced cardiac hypertrophy was also suppressed in Ca(v)3.2(-/-) mice. Consistent with these findings, cultured neonatal myocytes isolated from Ca(v)3.2(-/-) mice fail to respond hypertrophic stimulation by treatment with angiotensin II. Together, these results demonstrate the importance of Ca(v)3.2 in the development of cardiac hypertrophy both in vitro and in vivo. To test whether Ca(v)3.2 mediates the hypertrophic response through the calcineurin/NFAT pathway, we generated Ca(v)3.2(-/-), NFAT-luciferase reporter mice and showed that NFAT-luciferase reporter activity failed to increase after pressure overload in the Ca(v)3.2(-/-)/NFAT-Luc mice. Our results provide strong genetic evidence that Ca(v)3.2 indeed plays a pivotal role in the induction of calcineurin/NFAT hypertrophic signaling and is crucial for the activation of pathological cardiac hypertrophy.
Assuntos
Pressão Sanguínea , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Hipertensão/complicações , Miocárdio/metabolismo , Angiotensina II , Animais , Animais Recém-Nascidos , Aorta/cirurgia , Calcineurina/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/genética , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Constrição , Modelos Animais de Doenças , Etossuximida/farmacologia , Genes Reporter , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de TempoRESUMO
Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+]( i ) response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect N(+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+]( i ) responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Potenciais da Membrana/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Bovinos , Linhagem Celular , Membrana Celular/genética , Córtex Cerebral/fisiologia , Células Cromafins/citologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutação , Miristatos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Potássio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sódio/metabolismoRESUMO
Chronic pain can be initiated by one or more acute stimulations to sensitize neurons into the primed state. In the primed state, the basal nociceptive thresholds of the animal are normal, but, in response to another hyperalgesic stimulus, the animal develops enhanced and prolonged hyperalgesia. The exact mechanism of how primed state is formed is not completely understood. Here, we showed that spinal protein kinase C (PKC)/extracellular signal-regulated kinase (ERK) signal pathway is required for neuronal plasticity change, hyperalgesic priming formation, and the development of chronic hyperalgesia using acid-induced muscle pain model in mice. We discovered that phosphorylated extracellular signal-regulated kinase-positive neurons in the amygdala, spinal cord, and dorsal root ganglion were significantly increased after first acid injection. Inhibition of the phosphorylated extracellular signal-regulated kinase activity intrathecally, but not intracerebroventricularly or intramuscularly before first acid injection, prevented the development of chronic pain induced by second acid injection, which suggests that hyperalgesic priming signal is stored at spinal cord level. Furthermore, intrathecal injection of PKC but not protein kinase A blocker prevented the development of chronic pain, and PKC agonist was sufficient to induce prolonged hyperalgesia response after acid injection. We also found that mammalian target of rapamycin-dependent protein synthesis was required for the priming establishment. To test whether hyperalgesic priming leads to synaptic plasticity change, we recorded field excitatory postsynaptic potentials from spinal cord slices and found enhanced long-term potentiation in mice that received one acid injection. This long-term potentiation enhancement was prevented by inhibition of extracellular signal-regulated kinase. These findings show that the activation of PKC/ERK signal pathway and downstream protein synthesis is required for hyperalgesic priming and the consolidation of pain singling.
Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/metabolismo , Mialgia/fisiopatologia , Proteínas Quinases/metabolismo , Ácidos/toxicidade , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mialgia/induzido quimicamente , Mialgia/patologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Medição da Dor , Sirolimo/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Estilbamidinas/metabolismoRESUMO
Cav3.2 T-type Ca(2+) channel is required for the activation of calcineurin/NFAT signaling in cardiac hypertrophy. We aimed to investigate how Cav3.2 and calcineurin interact. We found that Ca(2+) and calmodulin modulate the Cav3.2/calcineurin interaction. Calcineurin binding to Cav3.2 decreases the enzyme's phosphatase activity and diminishes the channel's current density. Phenylephrine-induced hypertrophy in neonatal cardiac myocytes is reduced by a cell-permeable peptide with the calcineurin binding site sequence. These data suggest that Cav3.2 regulates calcineurin/NFAT pathway through both the Ca(2+) influx and calcineurin binding. Our findings unveiled a reciprocal regulation of Ca(2+) signaling which contributes to our understanding of cardiac hypertrophy.