Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227600

RESUMO

Autophagy-related protein 7 (ATG7) is an essential autophagy effector enzyme. Although it is well known that autophagy plays crucial roles in the infections with various viruses including influenza A virus (IAV), function and underlying mechanism of ATG7 in infection and pathogenesis of IAV remain poorly understood. Here, in vitro studies showed that ATG7 had profound effects on replication of IAV. Depletion of ATG7 markedly attenuated the replication of IAV, whereas overexpression of ATG7 facilitated the viral replication. ATG7 conditional knockout mice were further employed and exhibited significantly resistant to viral infections, as evidenced by a lower degree of tissue injury, slower body weight loss, and better survival, than the wild type animals challenged with either IAV (RNA virus) or pseudorabies virus (DNA virus). Interestingly, we found that ATG7 promoted the replication of IAV in autophagy-dependent and -independent manners, as inhibition of autophagy failed to completely block the upregulation of IAV replication by ATG7. To determine the autophagy-independent mechanism, transcriptome analysis was utilized and demonstrated that ATG7 restrained the production of interferons (IFNs). Loss of ATG7 obviously enhanced the expression of type I and III IFNs in ATG7-depleted cells and mice, whereas overexpression of ATG7 impaired the interferon response to IAV infection. Consistently, our experiments demonstrated that ATG7 significantly suppressed IRF3 activation during the IAV infection. Furthermore, we identified long noncoding RNA (lncRNA) GAPLINC as a critical regulator involved in the promotion of IAV replication by ATG7. Importantly, both inactivation of IRF3 and inhibition of IFN response caused by ATG7 were mediated through control over GAPLINC expression, suggesting that GAPLINC contributes to the suppression of antiviral immunity by ATG7. Together, these results uncover an autophagy-independent mechanism by which ATG7 suppresses host innate immunity and establish a critical role for ATG7/GAPLINC/IRF3 axis in regulating IAV infection and pathogenesis.


Assuntos
Vírus da Influenza A , Influenza Humana , Viroses , Animais , Humanos , Camundongos , Imunidade Inata , Interferons , Replicação Viral
2.
J Virol ; 96(7): e0020022, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293768

RESUMO

Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.


Assuntos
Imunidade Inata , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Antivirais/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferons/metabolismo , Camundongos , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/imunologia , Quinase Syk/genética , Quinase Syk/imunologia , Replicação Viral
3.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772132

RESUMO

An atomic magnetometer (AM) was used to non-invasively detect the tiny magnetic field generated by the brain of a single Drosophila. Combined with a visual stimulus system, the AM was used to study the relationship between visual salience and oscillatory activity of the Drosophila brain by analyzing changes in the magnetic field. Oscillatory activity of Drosophila in the 1-20 Hz frequency band was measured with a sensitivity of 20 fT/Hz. The field in the 20-30 Hz band under periodic light stimulation was used to explore the correlation between short-term memory and visual salience. Our method opens a new path to a more flexible method for the investigation of brain activity in Drosophila and other small insects.


Assuntos
Encéfalo , Drosophila , Animais , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Estimulação Luminosa/métodos
4.
J Virol ; 95(21): e0027721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34287042

RESUMO

Long noncoding RNAs (lncRNAs) are involved in numerous cellular processes. Increasing evidence suggests that some lncRNAs function in immunity through various complex mechanisms. However, implication of a large fraction of lncRNAs in antiviral innate immunity remains uncharacterized. Here, we identified an lncRNA called lncRNA IFITM4P that was transcribed from interferon-induced transmembrane protein 4 pseudogene (IFITM4P), a pseudogene belonging to the interferon-induced transmembrane protein (IFITM) family. We found that expression of lncRNA IFITM4P was significantly induced by infection with several viruses, including influenza A virus (IAV). Importantly, lncRNA IFITM4P acted as a positive regulator of innate antiviral immunity. Ectopic expression of lncRNA IFITM4P significantly suppressed IAV replication in vitro, whereas IFITM4P deficiency promoted viral production. We further observed that expression of lncRNA IFITM4P was upregulated by interferon (IFN) signaling during viral infection, and altering the expression of this lncRNA had significant effects on the mRNA levels of several IFITM family members, including IFITM1, IFITM2, and IFITM3. Moreover, lncRNA IFITM4P was identified as a target of the microRNA miR-24-3p, which represses mRNA of IFITM1, IFITM2, and IFITM3. The experiments demonstrated that lncRNA IFITM4P was able to cross-regulate the expression of IFITM family members as a competing endogenous RNA (ceRNA), leading to increased stability of these IFITM mRNAs. Together, our results reveal that lncRNA IFITM4P, as a ceRNA, is involved in innate immunity against viral infection through the lncRNA IFITM4P-miR-24-3p-IFITM1/2/3 regulatory network. IMPORTANCE lncRNAs play important roles in various biological processes, but their involvement in host antiviral responses remains largely unknown. In this study, we revealed that the pseudogene IFITM4P belonging to the IFITM family can transcribe a functional long noncoding RNA termed lncRNA IFITM4P. Importantly, results showed that lncRNA IFITM4P was involved in innate antiviral immunity, which resembles some interferon-stimulated genes (ISGs). Furthermore, lncRNA IFITM4P was identified as a target of miR-24-3p and acts as a ceRNA to inhibit the replication of IAV through regulating the mRNA levels of IFITM1, IFITM2, and IFITM3. These data provide new insight into the role of a previously uncharacterized lncRNA encoded by a pseudogene in the host antiviral response and a better understanding of the IFITM antiviral network.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Proteínas de Membrana/genética , RNA Longo não Codificante/genética , Células A549 , Animais , Cães , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A/genética , Interferons/genética , Células K562 , Células Madin Darby de Rim Canino , Proteínas de Membrana/imunologia , RNA Longo não Codificante/imunologia , Transdução de Sinais , Replicação Viral
5.
Cell Microbiol ; 22(11): e13242, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32596986

RESUMO

Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-ß and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-ß and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Regulação para Cima , Proteínas não Estruturais Virais/metabolismo , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia , Replicação Viral
6.
Cell Microbiol ; 21(8): e13036, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045320

RESUMO

Long noncoding RNAs (lncRNAs) are single-stranded RNA molecules longer than 200 nt that regulate many cellular processes. MicroRNA 155 host gene (MIR155HG) encodes the microRNA (miR)-155 that regulates various signalling pathways of innate and adaptive immune responses against viral infections. MIR155HG also encodes a lncRNA that we call lncRNA-155. Here, we observed that expression of lncRNA-155 was markedly upregulated during influenza A virus (IAV) infection both in vitro (several cell lines) and in vivo (mouse model). Interestingly, robust expression of lncRNA-155 was also induced by infections with several other viruses. Disruption of lncRNA-155 expression in A549 cells diminished the antiviral innate immunity against IAV. Furthermore, knockout of lncRNA-155 in mice significantly increased IAV replication and virulence in the animals. In contrast, overexpression of lncRNA-155 in human cells suppressed IAV replication, suggesting that lncRNA-155 is involved in host antiviral innate immunity induced by IAV infection. Moreover, we found that lncRNA-155 had a profound effect on expression of protein tyrosine phosphatase 1B (PTP1B) during the infection with IAV. Inhibition of PTP1B by lncRNA-155 resulted in higher production of interferon-beta (IFN-ß) and several critical interferon-stimulated genes (ISGs). Together, these observations reveal that MIR155HG derived lncRNA-155 can be induced by IAV, which modulates host innate immunity during the virus infection via regulation of PTP1B-mediated interferon response.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Vírus da Influenza A/imunologia , MicroRNAs/genética , Infecções por Orthomyxoviridae/genética , RNA Longo não Codificante/genética , Células A549 , Animais , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Células NIH 3T3 , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Células RAW 264.7 , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/imunologia , Transdução de Sinais , Análise de Sobrevida , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
7.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623059

RESUMO

Long noncoding RNAs (lncRNAs) are involved in a diversity of biological processes. It is known that differential expression of thousands of lncRNAs occurs in host during influenza A virus (IAV) infection. However, only few of them have been well characterized. Here, we identified a lncRNA, named as interferon (IFN)-stimulated lncRNA (ISR), which can be significantly upregulated in response to IAV infection in a mouse model. A sequence alignment revealed that lncRNA ISR is present in mice and human beings, and indeed, we found that it was expressed in several human and mouse cell lines and tissues. Silencing lncRNA ISR in A549 cells resulted in a significant increase in IAV replication, whereas ectopic expression of lncRNA ISR reduced the viral replication. Interestingly, interferon-ß (IFN-ß) treatment was able to induce lncRNA ISR expression, and induction of lncRNA ISR by viral infection was nearly abolished in host deficient of IFNAR1, a type I IFN receptor. Furthermore, the level of IAV-induced lncRNA ISR expression was decreased either in retinoic acid-inducible gene I (RIG-I) knockout A549 cells and mice or by nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) inhibitor treatment. Together, these data elucidate that lncRNA ISR is regulated by RIG-I-dependent signaling that governs IFN-ß production during IAV infection, and has an inhibitory capacity in viral replication.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Interferons/farmacologia , RNA Longo não Codificante/genética , Replicação Viral , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia
9.
Nucleic Acids Res ; 43(21): 10321-37, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26490959

RESUMO

Protein kinase R (PKR) is a vital component of host innate immunity against viral infection. However, the mechanism underlying inactivation of PKR by influenza A virus (IAV) remains elusive. Here, we found that vault RNAs (vtRNAs) were greatly induced in A549 cells and mouse lungs after infection with IAV. The viral NS1 protein was shown to be the inducer triggering the upregulation of vtRNAs. Importantly, silencing vtRNA in A549 cells significantly inhibited IAV replication, whereas overexpression of vtRNAs markedly promoted the viral replication. Furthermore, in vivo studies showed that disrupting vtRNA expression in mice significantly decreased IAV replication in infected lungs. The vtRNA knockdown animals exhibited significantly enhanced resistance to IAV infection, as evidenced by attenuated acute lung injury and spleen atrophy and consequently increased survival rates. Interestingly, vtRNAs promoted viral replication through repressing the activation of PKR and the subsequent antiviral interferon response. In addition, increased expression of vtRNAs was required for efficient suppression of PKR by NS1 during IAV infection. Moreover, vtRNAs were also significantly upregulated by infections of several other viruses and involved in the inactivation of PKR signaling by these viruses. These results reveal a novel mechanism by which some viruses circumvent PKR-mediated innate immunity.


Assuntos
Imunidade Inata , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/genética , RNA não Traduzido/metabolismo , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Resistência à Doença , Feminino , Humanos , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
10.
PLoS Pathog ; 10(1): e1003845, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391501

RESUMO

Innate cytokine response provides the first line of defense against influenza virus infection. However, excessive production of cytokines appears to be critical in the pathogenesis of influenza virus. Interferon lambdas (IFN-λ) have been shown to be overproduced during influenza virus infection, but the precise pathogenic processes of IFN-λ production have yet to be characterized. In this report, we observed that influenza virus induced robust expression of IFN-λ in alveolar epithelial cells (A549) mainly through a RIG-I-dependent pathway, but IFN-λ-induced phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1) was dramatically inhibited in the infected cells. Remarkably, influenza virus infection induced robust expression of suppressor of cytokine signaling-1 (SOCS-1), leading to inhibition of STAT1 activation. Interestingly, the virus-induced SOCS-1 expression was cytokine-independent at early stage of infection both in vitro and in vivo. Using transgenic mouse model and distinct approaches altering the expression of SOCS-1 or activation of STAT signaling, we demonstrated that disruption of the SOCS-1 expression or expression of constitutively active STAT1 significantly reduced the production of IFN-λ during influenza virus infection. Furthermore, we revealed that disruption of IFN-λ signaling pathway by increased SOCS-1 protein resulted in the activation of NF-κB and thereby enhanced the IFN-λ expression. Together, these data imply that suppression of IFN-λ signaling by virus-induced SOCS-1 causes an adaptive increase in IFN-λ expression by host to protect cells against the viral infection, as a consequence, leading to excessive production of IFN-λ with impaired antiviral response.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Interferons/imunologia , Infecções por Orthomyxoviridae/imunologia , Transdução de Sinais/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Animais , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Regulação da Expressão Gênica/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Interferons/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Transdução de Sinais/genética , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética
11.
J Virol ; 88(15): 8375-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829357

RESUMO

UNLABELLED: Although alteration in host cellular translation machinery occurs in virus-infected cells, the role of such alteration and the precise pathogenic processes are not well understood. Influenza A virus (IAV) infection shuts off host cell gene expression at transcriptional and translational levels. Here, we found that the protein level of eukaryotic translation initiation factor 4B (eIF4B), an integral component of the translation initiation apparatus, was dramatically reduced in A549 cells as well as in the lung, spleen, and thymus of mice infected with IAV. The decrease in eIF4B level was attributed to lysosomal degradation of eIF4B, which was induced by viral NS1 protein. Silencing eIF4B expression in A549 cells significantly promoted IAV replication, and conversely, overexpression of eIF4B markedly inhibited the viral replication. Importantly, we observed that eIF4B knockdown transgenic mice were more susceptible to IAV infection, exhibiting faster weight loss, shorter survival time, and more-severe organ damage. Furthermore, we demonstrated that eIF4B regulated the expression of interferon-induced transmembrane protein 3 (IFITM3), a critical protein involved in immune defense against a variety of RNA viruses, including influenza virus. Taken together, our findings reveal that eIF4B plays an important role in host defense against IAV infection at least by regulating the expression of IFITM3, which restricts viral entry and thereby blocks early stages of viral production. These data also indicate that influenza virus has evolved a strategy to overcome host innate immunity by downregulating eIF4B protein. IMPORTANCE: Influenza A virus (IAV) infection stimulates the host innate immune system, in part, by inducing interferons (IFNs). Secreted IFNs activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, leading to elevated transcription of a large group of IFN-stimulated genes that have antiviral function. To circumvent the host innate immune response, influenza virus has evolved multiple strategies for suppressing the production of IFNs. Here, we show that IAV infection induces lysosomal degradation of eIF4B protein; and eIF4B inhibits IAV replication by upregulating expression of interferon-induced transmembrane protein 3 (IFITM3), a key protein that protects the host from virus infection. Our finding illustrates a critical role of eIF4B in the host innate immune response and provides novel insights into the complex mechanisms by which influenza virus interacts with its host.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Biossíntese de Proteínas , Proteínas de Ligação a RNA/antagonistas & inibidores , Replicação Viral , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/virologia , Feminino , Humanos , Evasão da Resposta Imune , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteólise , Baço/virologia , Análise de Sobrevida , Timo/virologia
12.
J Virol ; 88(4): 1924-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284319

RESUMO

DNA vaccines offer advantage over conventional vaccines, as they are safer to use, easier to produce, and able to induce humoral as well cellular immune responses. Unfortunately, no DNA vaccines have been licensed for human use for the difficulties in developing an efficient and safe in vivo gene delivery system. In vivo electroporation (EP)-based DNA delivery has attracted great attention for its potency to enhance cellular uptake of DNA vaccines and function as an adjuvant. Minicircle DNA (a new form of DNA containing only a gene expression cassette and lacking a backbone of bacterial plasmid DNA) is a powerful candidate of gene delivery in terms of improving the levels and the duration of transgene expression in vivo. In this study, as a novel vaccine delivery system, we combined in vivo EP and the minicircle DNA carrying a codon-optimized HIV-1 gag gene (minicircle-gag) to evaluate the immunogenicity of this system. We found that minicircle-gag conferred persistent and high levels of gag expression in vitro and in vivo. The use of EP delivery further increased minicircle-based gene expression. Moreover, when delivered by EP, minicircle-gag vaccination elicited a 2- to 3-fold increase in cellular immune response and a 1.5- to 3-fold augmentation of humoral immune responses compared with those elicited by a pVAX1-gag positive control. Increased immunogenicity of EP-assisted minicircle-gag may benefit from increasing local antigen expression, upregulating inflammatory genes, and recruiting immune cells. Collectively, in vivo EP of minicircle DNA functions as a novel vaccine platform that can enhance efficacy and immunogenicity of DNA vaccines.


Assuntos
DNA de Cinetoplasto/imunologia , Sistemas de Liberação de Medicamentos/métodos , Eletroporação/métodos , HIV-1/genética , Vacinas de DNA/administração & dosagem , Análise de Variância , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , ELISPOT , Imunidade Humoral/genética , Imuno-Histoquímica , Luciferases , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
13.
Heliyon ; 10(11): e31740, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845884

RESUMO

Optically pumped magnetometers (OPMs) have become a favorable tool for magnetoencephalography (MEG) measurement, offering a non-invasive method of measurement. OPMs do not require cryogenic environments, sensors can be more closely aligned with the brain. We employed a passive single-stimulus paradigm in conjunction with OPMs with a sensitivity of 20 fT/ Hz to investigate the auditory response of rats to inter-stimulus interval (ISI) and frequencies, recording the rat auditory event-related magnetic fields (ERMFs). Our findings include: (1) Auditory evoked fields can be detected non-invasively by OPMs; (2) The amplitude of the rat auditory ERMFs varies with changes in ISI, with more pronounced amplitude changes observed after 5 s; (3) When the sound stimulus frequency is altered at the same ISI, the amplitude of the rats ERMFs changes with frequency, indicating significant differences in attention. Our method offers a valuable tool for the clinical application of a single stimulus paradigm and opens up a new avenue for research on the brain magnetic field detections.

14.
J Biol Chem ; 287(13): 9804-9816, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22318733

RESUMO

Influenza virus neuraminidase (NA) is transported to the virus assembly site at the plasma membrane and is a major viral envelope component that plays a critical role in the release of progeny virions and in determination of host range restriction. However, little is known about the host factors that are involved in regulating the intracellular and cell surface transport of NA. Here we identified the Cdc42-specific GAP, ARHGAP21 differentially expressed in host cells infected with influenza A virus using cDNA microarray analysis. Furthermore, we have investigated the involvement of Rho family GTPases in NA transport to the cell surface. We found that expression of constitutively active or inactive mutants of RhoA or Rac1 did not significantly affect the amount of NA that reached the cell surface. However, expression of constitutively active Cdc42 or depletion of ARHGAP21 promoted the transport of NA to the plasma membranes. By contrast, cells expressing shRNA targeting Cdc42 or overexpressing ARHGAP21 exhibited a significant decrease in the amount of cell surface-localized NA. Importantly, silencing Cdc42 reduced influenza A virus replication, whereas silencing ARHGAP21 increased the virus replication. Together, our results reveal that ARHGAP21- and Cdc42-based signaling regulates the NA transport and thereby impacts virus replication.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Galinhas , Cães , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Influenza Humana/genética , Neuraminidase/genética , Transporte Proteico , Transdução de Sinais/genética , Proteínas Virais/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Viruses ; 15(8)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37632040

RESUMO

Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.


Assuntos
RNA Circular , Viroses , Humanos , RNA Circular/genética , Imunidade Inata , Viroses/genética , Progressão da Doença , Células Eucarióticas
16.
Oncogene ; 42(47): 3514-3528, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845393

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype and accounts for approximately 15-20% of breast cancer cases. In this study, we identified KLHL29, which is an understudied member of the Kelch-like gene family, as a crucial tumor suppressor that regulates chemosensitivity in TNBC. KLHL29 expression was significantly downregulated in breast cancer tissues compared with adjacent normal tissues, and low levels of KLHL29 were associated with unfavorable prognoses. Ectopic KLHL29 suppressed, while depleting KLHL29 promoted, the growth, proliferation, migration, and invasion of TNBC. Mechanistically, KLHL29 recruited the CUL3 E3-ligase to the RNA-binding protein DDX3X, leading to the proteasomal degradation of the latter. This downregulation of DDX3X resulted in the destabilization of CCND1 mRNA and the consequent cell cycle arrest at G0/G1 phase. Remarkably, the DDX3X inhibitor RK33 combined with platinum-based chemotherapy can synergistically suppress TNBC that usually expresses low levels of KLHL29 and high levels of DDX3X using cancer cell-derived xenograft and patient-derived organoids models. Altogether, we uncovered the potential role for the KLHL29-DDX3X signaling cascade in the regulation of TNBC progression, thus providing a promising combination strategy for overcoming TNBC chemoresistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
17.
Microbiol Spectr ; : e0363722, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847523

RESUMO

Circular RNAs (circRNAs) are an important subclass of noncoding RNAs implicated in the regulation of multiple biological processes. However, the functional involvement of circRNAs in the pathogenesis of influenza A viruses (IAVs) remains largely unknown. Here, we employed RNA sequencing (RNA-Seq) to examine the differentially expressed circRNAs in mouse lung tissues challenged or not challenged with IAV to evaluate the impact of viral infection on circRNAs in vivo. We observed that 413 circRNAs exhibited significantly altered levels following IAV infection. Among these, circMerTK, the derivative of myeloid-epithelial-reproductive tyrosine kinase (MerTK) pre-mRNA, was highly induced by IAV. Interestingly, circMerTK expression was also increased upon infection with multiple DNA and RNA viruses in human and animal cell lines, and thus it was selected for further studies. Poly(I:C) and interferon ß (IFN-ß) stimulated circMerTK expression, while RIG-I knockout and IFNAR1 knockout cell lines failed to elevate circMerTK levels after IAV infection, demonstrating that circMerTK is regulated by IFN signaling. Furthermore, circMerTK overexpression or silencing accelerated or impeded IAV and Sendai virus replication, respectively. Silencing circMerTK enhanced the production of type I IFNs and interferon-stimulating genes (ISGs), whereas circMerTK overexpression suppressed their expression at both the mRNA and protein levels. Notably, altering circMerTK expression had no effect on the MerTK mRNA level in cells infected or not infected with IAV, and vice versa. In addition, human circMerTK and mouse homologs functioned similarly in antiviral responses. Together, these results identify circMerTK as an enhancer of IAV replication through suppression of antiviral immunity. IMPORTANCE CircRNAs are an important class of noncoding RNAs characterized by a covalently closed circular structure. CircRNAs have been proven to impact numerous cellular processes, where they conduct specialized biological activities. In addition, circRNAs are believed to play a crucial role in regulating immune responses. Nevertheless, the functions of circRNAs in the innate immunity against IAV infection remain obscure. In this study, we employed transcriptomic analysis to investigate the alterations in circRNAs expression following IAV infection in vivo. It was found that expression of 413 circRNAs was significantly altered, of which 171 were upregulated, and 242 were downregulated following the IAV infection. Interestingly, circMerTK was identified as a positive regulator of IAV replication in both human and mouse hosts. CircMerTK was shown to influence IFN-ß production and its downstream signaling, enhancing IAV replication. This finding provides new insights into the critical roles of circRNAs in regulating antiviral immunity.

18.
Front Plant Sci ; 13: 848989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463417

RESUMO

Waterlogging (W-B) is a major abiotic stress during the growth cycle of maize production in Huang-huai-hai plain of China, threatening food security. A wide range of studies suggests that the application of 6-benzyladenine (6-BA) can mitigate the W-B effects on crops. However, the mechanisms underlying this process remain unclear. In this study, the application of 6-BA that effectively increased the yield of summer maize was confirmed to be related to the hormone and sugar metabolism. At the florets differentiation stage, application of 6-BA increased the content of trans-zeatin (TZ, + 59.3%) and salicylic acid (SA, + 285.5%) of ears to induce the activity of invertase, thus establishing sink strength. During the phase of sexual organ formation, the TZ content of ear leaves, spike nodes, and ears was increased by 24.2, 64.2, and 46.1%, respectively, in W-B treatment, compared with that of W. Accordingly, the sugar metabolism of summer maize was also improved. Therefore, the structure of the spike node was improved, promoting the translocation of carbon assimilations toward the ears and the development of ears and filaments. Thus the number of fertilized florets, grain number, and yield were increased by the application of 6-BA.

19.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3489-3500, 2022 Sep 25.
Artigo em Zh | MEDLINE | ID: mdl-36151816

RESUMO

Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro, but the in vivo function is poorly understood. In this study, via various experimental techniques such as hematoxylin-eosin (HE) staining, flow cytometry, Western blotting, and immunohistochemistry, we investigated the role of eIF4B in mouse embryo development using an eIF4B knockout (KO) mouse model and explored the mechanism. We found that the livers, but not lungs, brain, stomach, or pancreas, derived from eIF4B KO mouse embryos displayed severe pathological changes characterized by enhanced apoptosis and necrosis. Accordingly, high expression of cleaved-caspase 3, and excessive activation of mTOR signaling as evidenced by increased expression and phosphorylation of p70S6K and enhanced phosphorylation of 4EBP1, were observed in mouse embryonic fibroblasts and fetal livers from eIF4B KO mice. These results uncover a critical role of eIF4B in mouse embryo development and provide important insights into the biological functions of eIF4B in vivo.


Assuntos
Fibroblastos , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Apoptose/genética , Caspase 3 , Amarelo de Eosina-(YS) , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Hematoxilina , Fígado/metabolismo , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR
20.
Ann Transl Med ; 10(2): 93, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282081

RESUMO

Background: The discordance of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 cell nuclear proliferation antigen status in patients with locally advanced breast cancer pre- and post-neoadjuvant chemotherapy (NAC) is quite common. This study aimed to assess the frequency of changes in receptor status after NAC in patients with invasive ductal breast cancer and the prognostic impact of such changes. Methods: The study comprised 670 patients who were diagnosed with invasive ductal breast carcinoma and treated with both NAC and surgery from 2012-2017. Hormone receptor (HR; including ER and PR), HER2, and Ki-67 status was assessed before NAC and in residual invasive tumor cells of the surgical specimens. The prognostic impact of receptor conversions in breast cancer patients treated with NAC was evaluated in this retrospective study. Results: The conversion of ER was related to overall survival (OS; P=0.008) and disease-free survival (DFS; P=0.004). Patients whose ER status was always positive had the best prognosis, and those who were always negative had the worst prognosis. Similar results were also found for PR status, as the conversion of PR status was also related to OS (P<0.001) and DFS (P<0.001). At the same time, the conversion of Ki-67 status was related to OS (P=0.042) and DFS (P=0.037), and patients whose Ki-67 status was ≤20% persistently after NAC had the best survival among the 4 groups, while those whose Ki-67 status changed from ≤20% to >20% after NAC had the worst survival. Nevertheless, there was no statistical significance in the conversion of HER2 status. In multivariate Cox regression analyses, PR conversion and post-neoadjuvant pathological lymph node stage (ypN) were independent prognostic factors for DFS (P=0.008, <0.001) and OS (P=0.002, <0.001). Conclusions: Changes in receptor status between pre-treatment and residual disease after NAC are common. Moreover, these alterations have an impact on the survival outcome of invasive ductal breast cancer patients. Thus, receptor status should be re-evaluated routinely before and after NAC to guide individualized treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA