Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Cell ; 186(12): 2656-2671.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295403

RESUMO

Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.


Assuntos
Brassica napus , Plasmodioforídeos , Microscopia Crioeletrônica , Chumbo , Brassica napus/genética , Plasmodioforídeos/fisiologia , Canais Iônicos , Doenças das Plantas
2.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764291

RESUMO

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Assuntos
Transdução de Sinais , Pele , Humanos , Pele/metabolismo
3.
Cell ; 184(13): 3528-3541.e12, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33984278

RESUMO

Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Resistência à Doença/imunologia , Imunidade Vegetal , Transdução de Sinais , Animais , Morte Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Ácido Glutâmico/metabolismo , Bicamadas Lipídicas/metabolismo , Oócitos/metabolismo , Células Vegetais/metabolismo , Multimerização Proteica , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imagem Individual de Molécula , Vacúolos/metabolismo , Xenopus
4.
Nature ; 613(7944): 474-478, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653568

RESUMO

Photons with spin angular momentum possess intrinsic chirality, which underpins many phenomena including nonlinear optics1, quantum optics2, topological photonics3 and chiroptics4. Intrinsic chirality is weak in natural materials, and recent theoretical proposals5-7 aimed to enlarge circular dichroism by resonant metasurfaces supporting bound states in the continuum that enhance substantially chiral light-matter interactions. Those insightful works resort to three-dimensional sophisticated geometries, which are too challenging to be realized for optical frequencies8. Therefore, most of the experimental attempts9-11 showing strong circular dichroism rely on false/extrinsic chirality by using either oblique incidence9,10 or structural anisotropy11. Here we report on the experimental realization of true/intrinsic chiral response with resonant metasurfaces in which the engineered slant geometry breaks both in-plane and out-of-plane symmetries. Our result marks, to our knowledge, the first observation of intrinsic chiral bound states in the continuum with near-unity circular dichroism of 0.93 and a high quality factor exceeding 2,663 for visible frequencies. Our chiral metasurfaces may lead to a plethora of applications in chiral light sources and detectors, chiral sensing, valleytronics and asymmetric photocatalysis.

5.
Nature ; 610(7932): 532-539, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163289

RESUMO

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Proteínas NLR , Proteínas de Plantas , Receptores Imunológicos , Triticum , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arginina , Canais de Cálcio/química , Canais de Cálcio/imunologia , Canais de Cálcio/metabolismo , Cátions/metabolismo , Leucina , Proteínas NLR/química , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Triticum/imunologia , Triticum/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Eletrofisiologia
6.
Mol Cell ; 79(5): 728-740.e6, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721385

RESUMO

Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.


Assuntos
Citidina Desaminase/genética , Citosina , Edição de Genes/métodos , Antígenos de Histocompatibilidade Menor/genética , Oryza/genética , Citosina/química , Genes de Plantas , Humanos , Mutação , RNA Guia de Cinetoplastídeos/química , RNA de Plantas/química , Reprodutibilidade dos Testes
7.
PLoS Biol ; 21(9): e3002316, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747910

RESUMO

Embryonic mesenchymal cells are dispersed within an extracellular matrix but can coalesce to form condensates with key developmental roles. Cells within condensates undergo fate and morphological changes and induce cell fate changes in nearby epithelia to produce structures including hair follicles, feathers, or intestinal villi. Here, by imaging mouse and chicken embryonic skin, we find that mesenchymal cells undergo much of their dispersal in early interphase, in a stereotyped process of displacement driven by 3 hours of rapid and persistent migration followed by a long period of low motility. The cell division plane and the elevated migration speed and persistence of newly born mesenchymal cells are mechanosensitive, aligning with tissue tension, and are reliant on active WNT secretion. This behaviour disperses mesenchymal cells and allows daughters of recent divisions to travel long distances to enter dermal condensates, demonstrating an unanticipated effect of cell cycle subphase on core mesenchymal behaviour.

8.
Plant Cell ; 34(6): 2222-2241, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35294020

RESUMO

Ear length (EL) is a key trait that contributes greatly to grain yield in maize (Zea mays). While numerous quantitative trait loci for EL have been identified, few causal genes have been studied in detail. Here we report the characterization of ear apical degeneration1 (ead1) exhibiting strikingly shorter ears and the map-based cloning of the casual gene EAD1. EAD1 is preferentially expressed in the xylem of immature ears and encodes an aluminum-activated malate transporter localizing to the plasma membrane. We show that EAD1 is a malate efflux transporter and loss of EAD1 leads to lower malate contents in the apical part of developing inflorescences. Exogenous injections of malate rescued the shortened ears of ead1. These results demonstrate that EAD1 plays essential roles in regulating maize ear development by delivering malate through xylem vessels to the apical part of the immature ear. Overexpression of EAD1 led to greater EL and kernel number per row and the EAD1 genotype showed a positive association with EL in two different genetic segregating populations. Our work elucidates the critical role of EAD1 in malate-mediated female inflorescence development and provides a promising genetic resource for enhancing maize grain yield.


Assuntos
Inflorescência , Zea mays , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Inflorescência/genética , Malatos/metabolismo , Fenótipo , Locos de Características Quantitativas , Zea mays/metabolismo
9.
Crit Care Med ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832833

RESUMO

OBJECTIVES: This study aimed to systematically assess the methodological quality and key recommendations of the guidelines for the diagnosis and treatment of liver failure (LF), furnishing constructive insights for guideline developers and equipping clinicians with evidence-based information to facilitate informed decision-making. DATA SOURCES: Electronic databases and manual searches from January 2011 to August 2023. STUDY SELECTION: Two reviewers independently screened titles and abstracts, then full texts for eligibility. Fourteen guidelines were included. DATA EXTRACTION AND SYNTHESIS: Two reviewers extracted data and checked by two others. Methodological quality of the guidelines was appraised using the Appraisal of Guidelines for Research and Evaluation II tool. Of the 14 guidelines, only the guidelines established by the Society of Critical Care Medicine and the American College of Gastroenterology (2023) achieved an aggregate quality score exceeding 60%, thereby meriting clinical recommendations. It emerged that there remains ample room for enhancement in the quality of the guidelines, particularly within the domains of stakeholder engagement, rigor, and applicability. Furthermore, an in-depth scrutiny of common recommendations and supporting evidence drawn from the 10 adult LF guidelines unveiled several key issues: controversy exists in the recommendation, the absence of supporting evidence and confusing use of evidence for recommendations, and a preference in evidence selection. CONCLUSIONS: There are high differences in methodological quality and recommendations among LF guidelines. Improving these existing problems and controversies will benefit existing clinical practice and will be an effective way for developers to upgrade the guidelines.

10.
Metab Eng ; 81: 238-248, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160746

RESUMO

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Assuntos
Corynebacterium glutamicum , Fermentação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico , Ácido Poliglutâmico/genética , Ligases/metabolismo , Glucose/metabolismo
11.
Langmuir ; 40(16): 8409-8417, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588456

RESUMO

Understanding the mechanics of blisters confined by two-dimensional (2D) materials is of great importance for either fundamental studies or for their practical applications. In this work, we investigate the mechanical properties of nanoscale 2D material blisters using contact-resonance atomic force microscopy (CR-AFM). From the measurement results at the blister centers, the blisters' internal pressures are characterized, which are shown to be inversely proportional to the blisters' sizes. Our measurements agree considerably well with values predicted by theoretical mechanic analyses of the blisters. In addition, high-resolution mechanical mapping with CR-AFM reveals fine, complex ridge patterns of the blisters' confining membranes, which can hardly be distinguished from their topographies. The pattern complexity of a blister system is shown to increase with an increase in its bendability.

12.
J Org Chem ; 89(11): 7970-7981, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38788145

RESUMO

Benzothiadiazine-1-oxide scaffolds with S-stereogenic centers are prevalent in bioactive and pharmaceutical molecules. Reported works mainly focused on the metal-catalyzed asymmetric C-H amination/cyclization reaction for the synthesis of benzothiadiazine-1-oxides. Here, we reported a chiral phosphoric acid-catalyzed kinetic resolution of sulfoximines, providing chiral benzothiadiazine-1-oxides and recovered chiral sulfoximines with moderate to good enantioselectivities (s factors up to 36.6).

13.
Inorg Chem ; 63(1): 824-832, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38114300

RESUMO

The catalytic oxidation of ethylbenzene (EB) into acetophenone (AP) is a vibrant area, with a growing number of researchers paying attention to this thematic investigation. Herein, we demonstrate that spinel-type (Co,Mn)(Co,Mn)2O4 can function as an efficient catalyst for the solvent-free oxidation of EB with molecular oxygen. The incorporation of Mn into the Co3O4 network can break the local structural symmetry of Co-O-Co linkages due to the bond competition, inducing the formation of an asymmetrical Co-O-Mn configuration with an electron local exchange interaction. The Co-O-Mn sites can facilitate the perturbation of nonpolar O2 and thus contribute to the generation of abundant •O2- species for initiating the oxidation of EB. We envision that this study not only provides a promising catalyst for EB oxidation but also affords a new insight into the design of advanced spinel oxides for selective oxidation reactions.

14.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452386

RESUMO

Pancreatic cancer's high fatality rates stem from its resistance to systemic drug delivery and aggressive metastasis, limiting the efficacy of conventional treatments. In this study, two-dimensional ultrathin silicene nanosheets were initially synthesized and near-infrared-responsive two-dimensional silicene-mesoporous silica nanoparticles (SMSNs) were successfully constructed to load the clinically-approved conventional pancreatic cancer chemotherapeutic drug gemcitabine. Experiments on nanoparticle characterization show that they have excellent photothermal conversion ability and stability. Then silicene-mesoporous silica nanoparticles loaded with gemcitabine nanoparticles (SMSN@G NPs) were employed in localized photothermal therapy to control pancreatic tumor growth and achieve therapeutic effects. Our research confirmed the functionality of SMSN@G NPs through immunoblotting and apoptotic assays, demonstrating its capacity to enhance the nuclear translocation of the NF-κB p65, further affect the protein levels of apoptosis-related genes, induce the apoptosis of tumor cells, and ultimately inhibit the growth of the tumor. Additionally, the study assessed the inhibitory role of SMSN@G NPs on pancreatic neoplasm growthin vivo, revealing its excellent biocompatibility. SMSN@G NPs have a nice application prospect for anti-pancreatic tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gencitabina , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Desoxicitidina/farmacologia , Dióxido de Silício/farmacologia , Linhagem Celular Tumoral , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
15.
Environ Sci Technol ; 58(10): 4737-4750, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408453

RESUMO

Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Simulação de Acoplamento Molecular , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Instalações de Eliminação de Resíduos , Alcanossulfonatos , Ácidos Carboxílicos/análise
16.
Mol Cell ; 64(1): 79-91, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666591

RESUMO

CENP-A is a centromere-specific histone 3 variant essential for centromere specification. CENP-A partially replaces canonical histone H3 at the centromeres. How the particular CENP-A/H3 ratio at centromeres is precisely maintained is unknown. It also remains unclear how CENP-A is excluded from non-centromeric chromatin. Here, we identify Ccp1, an uncharacterized NAP family protein in fission yeast that antagonizes CENP-A loading at both centromeric and non-centromeric regions. Like the CENP-A loading factor HJURP, Ccp1 interacts with CENP-A and is recruited to centromeres at the end of mitosis in a Mis16-dependent manner. These data indicate that factors with opposing CENP-A loading activities are recruited to centromeres. Furthermore, Ccp1 also cooperates with H2A.Z to evict CENP-A assembled in euchromatin. Structural analyses indicate that Ccp1 forms a homodimer that is required for its anti-CENP-A loading activity. Our study establishes mechanisms for maintenance of CENP-A homeostasis at centromeres and the prevention of ectopic assembly of centromeres.


Assuntos
Carboxipeptidases/genética , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/química , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Sítios de Ligação , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Centrômero/química , Centrômero/metabolismo , Centrômero/ultraestrutura , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Eucromatina/metabolismo , Eucromatina/ultraestrutura , Histonas/química , Histonas/genética , Histonas/metabolismo , Mitose , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais
17.
Can J Microbiol ; 70(3): 70-85, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096505

RESUMO

The grasslands in North China are rich in fungal resources. However, the knowledge of the structure and function of fungal communities and the role of microbial communities in vegetation restoration and succession are limited. Thus, we used an Illumina HiSeq PE250 high-throughput sequencing platform to study the changing characteristics of soil fungal communities in degraded grasslands, which were categorized as non-degraded (ND), lightly degraded, moderately degraded, and severely degraded (SD). Moreover, a correlation analysis between soil physical and chemical properties and fungal communities was completed. The results showed that the number of plant species, vegetation coverage, aboveground biomass, and diversity index decreased significantly with increasing degradation, and there were significant differences in the physical and chemical properties of the soil among the different degraded grasslands. The dominant fungal phyla in the degraded grassland were as follows: Ascomycota, 44.88%-65.03%; Basidiomycota, 12.68%-29.91%; and unclassified, 5.51%-16.91%. The dominant fungi were as follows: Mortierella, 6.50%-11.41%; Chaetomium, 6.71%-11.58%; others, 25.95%-36.14%; and unclassified, 25.56%-53.0%. There were significant differences in the microbial Shannon-Wiener and Chao1 indices between the ND and degraded meadows, and the composition and diversity of the soil fungal community differed significantly as the meadows continued to deteriorate. The results showed that pH was the most critical factor affecting soil microbial and fungal communities in SD grasslands, whereas soil microbial and fungal communities in ND grasslands were mainly affected by water content and other environmental factors.


Assuntos
Microbiota , Micobioma , Pradaria , China , Solo
18.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810257

RESUMO

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain-deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Quinase CDC2/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/metabolismo , Interfase , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose , Fosforilação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia
19.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926963

RESUMO

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Folhas de Planta/genética , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Brachypodium/genética , Brachypodium/ultraestrutura , Dióxido de Carbono/metabolismo , Microscopia Crioeletrônica , Transporte de Íons/genética , Proteínas de Membrana/ultraestrutura , Fosforilação/genética , Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Conformação Proteica , Transdução de Sinais/genética
20.
Biochem Genet ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349437

RESUMO

Benign prostatic hyperplasia (BPH), commonly seen in older men, can cause symptoms of discomfort, and may even need surgical intervention. Studies have shown the potential link between gut microbes and BPH, but the molecular association is not fully understood. METHODS: Four-week-old male Sprague-Dawley rats (n = 16) were randomly allocated to normal control diet (ND, 10% fat) and high-fat diet-induced BPH (HFD, 45% fat) groups. Metagenomic analysis was used to examine the abundance and discrepancies in gut microbiota within the two groups after 24 weeks of feeding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted to assess the biological functions of the differentially expressed genes. RESULTS: Rats with HFD-induced obesity exhibited morphological abnormalities in their prostate tissues. Metagenomic analysis of the gut revealed that Firmicutes were the dominant phyla in the HFD group, whereas the ND group had a higher abundance of Spirochaetes. At the genus level, Ruminococcus spp exhibited greater abundance in the HFD group, whereas Treponema spp were more abundant in the ND group. KEGG analysis demonstrated that the differentially expressed genes were mainly enriched in the NOD-like receptor (NLR) signaling, PI3K-Akt signaling, estrogen-signaling, signalings associated with GABAergic synapses, pantothenate and CoA biosynthesis. CONCLUSION: The findings of our study indicated that there was a notable variation in the microbiota abundance within the intestinal tract of obese rats suffering from prostate hyperplasia. It is plausible that these differentially abundant bacteria played a role in the development of pathological alterations in the prostate through the facilitation of inflammatory responses; however, additional research is required to validate the findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA