Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
J Am Chem Soc ; 146(11): 7831-7838, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445480

RESUMO

Low-dimensional lead halide perovskites with broadband emission hold great promise for single-component white-light-emitting (WLE) devices. The origin of their broadband emission has been commonly attributed to self-trapped excitons (STEs) composed of localized electronic polarization with a distorted lattice. Unfortunately, the exact electronic and structural nature of the STE species in these WLE materials remains elusive, hindering the rational design of high-efficiency WLE materials. In this study, by combining ultrafast transient absorption spectroscopy and ab initio calculations, we uncover surprisingly similar STE features in two prototypical low dimensional WLE perovskite single crystals: 1D (DMEDA)PbBr4 and 2D (EDBE)PbBr4, despite of their different dimensionalities. Photoexcited excitons rapidly localize to intrinsic STEs within ∼250 fs, contributing to the white light emission. Crucially, STEs in both systems exhibit characteristic absorption features akin to those of Pb+ and Pb3+. Further atomic level theoretical simulations confirm photoexcited electrons and holes are localized on the Pb2+ site to form Pb+- and Pb3+-like species, resembling transient photoinduced Pb2+ disproportionation. This study provides conclusive evidence on the key excited state species for exciton self-trapping and broadband emission in low dimensional lead halide WLE perovskites and paves the way for the rational design of high-efficiency WLE materials.

2.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224211

RESUMO

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

3.
J Am Chem Soc ; 145(20): 11227-11235, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159928

RESUMO

Whether and how an electron-hole pair at the donor-acceptor interface separates from their mutual Coulombic interaction has been a long-standing question for both fundamental interests and optoelectronic applications. This question is particularly interesting but yet to be unraveled in the emerging mixed-dimensional organic/2D semiconductor excitonic heterostructures where the Coulomb interaction is poorly screened. Here, by tracking the characteristic electroabsorption (Stark effect) signal from separated charges using transient absorption spectroscopy, we directly follow the electron-hole pair separation process in a model organic/2D heterostructure, vanadium oxide phthalocyanine/monolayer MoS2. After sub-100 fs photoinduced interfacial electron transfer, we observe a barrier-less long-range electron-hole pair separation to free carriers within 1 ps by hot charge transfer exciton dissociation. Further experiment reveals the key role of the charge delocalization in organic layers sustained by the local crystallinity, while the inherent in-plane delocalization of the 2D semiconductor has a negligible contribution to charge pair separation. This study reconciles the seemingly contradicting charge transfer exciton emission and dissociation process and is important to the future development of efficient organic/2D semiconductor optoelectronic devices.

4.
Nat Mater ; 21(2): 210-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34764429

RESUMO

X-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create secondary electrons and ions. As a result, a high fraction of triplet states is generated, which act as scintillation loss channels. Here we found that X-ray-induced triplet excitons can be exploited for emission through very rapid, thermally activated up-conversion. We report scintillators based on three thermally activated delayed fluorescence molecules with different emission bands, which showed significantly higher efficiency than conventional anthracene-based scintillators. X-ray imaging with 16.6 line pairs mm-1 resolution was also demonstrated. These results highlight the importance of efficient and prompt harvesting of triplet excitons for efficient X-ray scintillation and radiation detection.


Assuntos
Elétrons , Fótons , Fluorescência , Raios X
5.
Opt Express ; 31(7): 11292-11307, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155768

RESUMO

Randomness, mainly in the form of random numbers, is the fundamental prerequisite for the security of many cryptographic tasks. Quantum randomness can be extracted even if adversaries are fully aware of the protocol and even control the randomness source. However, an adversary can further manipulate the randomness via tailored detector blinding attacks, which are hacking attacks suffered by protocols with trusted detectors. Here, by treating no-click events as valid events, we propose a quantum random number generation protocol that can simultaneously address source vulnerability and ferocious tailored detector blinding attacks. The method can be extended to high-dimensional random number generation. We experimentally demonstrate the ability of our protocol to generate random numbers for two-dimensional measurement with a generation speed of 0.1 bit per pulse.

6.
Opt Lett ; 48(13): 3551-3554, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390178

RESUMO

The linear constraint of secret key rate capacity is overcome by the twin-field quantum key distribution (QKD). However, the complex phase-locking and phase-tracking technique requirements throttle the real-life applications of the twin-field protocol. The asynchronous measurement-device-independent (AMDI) QKD, also called the mode-pairing QKD, protocol can relax the technical requirements and keep the similar performance of the twin-field protocol. Here, we propose an AMDI-QKD protocol with a nonclassical light source by changing the phase-randomized weak coherent state to a phase-randomized coherent-state superposition in the signal state time window. Simulation results show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol, while exhibiting robustness to imperfect modulation of nonclassical light sources.

7.
Opt Lett ; 48(5): 1244-1247, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857258

RESUMO

Quantum network applications such as distributed quantum computing and quantum secret sharing represent a promising future network equipped with quantum resources. Entanglement generation and distribution over long distances are critical and unavoidable when utilizing quantum technology in a fully connected network. The distribution of bipartite entanglement over long distances has seen some progress, while the distribution of multipartite entanglement over long distances remains unsolved. Here we report a two-dimensional quantum repeater protocol for the generation of multipartite entanglement over long distances with an all-photonic framework to fill this gap. The entanglement generation yield remains proportional to the transmission efficiency regardless of the number of network users and shows long transmission distance under various numbers of network users. With the improved efficiency and flexibility of extending the number of users, we anticipate that our protocol can work as a significant building block for quantum networks in the future.

8.
Vet Res ; 54(1): 11, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747286

RESUMO

Antimicrobial resistance (AMR) is a global health issue and surveillance of AMR can be useful for understanding AMR trends and planning intervention strategies. Salmonella, widely distributed in food-producing animals, has been considered the first priority for inclusion in the AMR surveillance program by the World Health Organization (WHO). Recent advances in rapid and affordable whole-genome sequencing (WGS) techniques lead to the emergence of WGS as a one-stop test to predict the antimicrobial susceptibility. Since the variation of sequencing and minimum inhibitory concentration (MIC) measurement methods could result in different results, this study aimed to develop WGS-based random forest models for predicting MIC values of 24 drugs using data generated from the same laboratories in Taiwan. The WGS data have been transformed as a feature vector of 10-mers for machine learning. Based on rigorous validation and independent tests, a good performance was obtained with an average mean absolute error (MAE) less than 1 for both validation and independent test. Feature selection was then applied to identify top-ranked 10-mers that can further improve the prediction performance. For surveillance purposes, the genome sequence-based machine learning methods could be utilized to monitor the difference between predicted and experimental MIC, where a large difference might be worthy of investigation on the emerging genomic determinants.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Taiwan , Algoritmo Florestas Aleatórias , Salmonella/genética , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana
9.
Nanotechnology ; 34(21)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36801855

RESUMO

Tin-lead perovskite-based photodetectors have a wide light-absorption wavelength range, which spans 1000 nm. However, the preparation of the mixed tin-lead perovskite films faces two great obstacles, namely easy oxidation of Sn2+to Sn4+and fast crystallization from tin-lead perovskite precursor solutions, thus further resulting in poor morphology and high density of defects in tin-lead perovskite films. In this study, we demonstrated a high-performance of near-infrared photodetectors prepared from a stable low-bandgap (MAPbI3)0.5(FASnI3)0.5film modified with 2-fluorophenethylammonium iodide (2-F-PEAI). The addition engineering can efficiently improve the crystallization of (MAPbI3)0.5(FASnI3)0.5films through the coordination binding between Pb2+and N atom in 2-F-PEAI, and resulting in a uniform and dense (MAPbI3)0.5(FASnI3)0.5film. Moreover, 2-F-PEAI suppressed Sn2+oxidation and effectively passivated defects in the (MAPbI3)0.5(FASnI3)0.5film, thereby significantly reducing the dark current in the PDs. Consequently, the near-infrared photodetectors showed a high responsivity with a specific detectivity of over 1012Jones at 800 to near-1000 nm. Additionally, the stability of PDs incorporated with 2-F-PEAI has been significantly improved under air conditions, and the device with the 2-F-PEAI ratio of 400:1 retained 80% of its initial efficiency after 450 h storage in air without encapsulation. Finally, 5 × 5 cm2photodetector arrays were fabricated to demonstrate the potential utility of the Sn-Pb perovskite photodetector in optical imaging and optoelectronic applications.

10.
Altern Ther Health Med ; 29(7): 429-433, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573592

RESUMO

Objective: To investigate water exercise therapy's effect on lower limb function rehabilitation in patients with the first stroke. Method: 160 patients with the first stroke and lower limb dysfunction who received rehabilitation treatment in the Geriatric Hospital of Hainan, China, from May 2020 to June 2021 were randomly divided into two groups, the control group, and the hydrotherapy group. Each group comprises 80 cases in each group. The control group received conventional drug therapy and traditional rehabilitation training, while the hydrotherapy group received underwater exercise training in combination with the routine group treatment plan. The National Health Center Stroke Scale (NIHSS), the modified Rankin scale (MRS), the limb motor function score table (Fugl-Meyer assessment, FMA), Functional Walking Scale (functional ambulation category scale, FAC), Berg Balance Scale (BBS) and the modified Barthel index (MBI) were respectively used to evaluate the neurological function, lower limb motor function, walking function, balance function and daily living ability before and after treatment. Result: There was no significant difference in NIHSS, MRS, FMA, FAC, BBS, and MBI scores between the two groups before treatment (P > .05). However, after 8 weeks of treatment, there was a significant difference in FMA, FAC, BBS, and MBI scores between the two groups (P = .00035). The FMA scores in control group was 16.60 ± 4.49, while 21.45 ± 2.96 after treatment. The FAC scores in control group was 1.45 ± 0.68, while 1.95 ± 0.783 after treatment. Conclusion: Early water exercise training in hemiplegic patients with the first stroke can significantly enhance the balance ability, walking ability as well as limb coordination of patients.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Idoso , Fisioterapia Aquática , Hemiplegia/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Extremidade Inferior , Resultado do Tratamento
11.
Nano Lett ; 22(21): 8755-8762, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305523

RESUMO

The excited state species and properties in low-dimensional semiconductors can be completely redefined by electron-lattice coupling or a polaronic effect. Here, by combining ultrafast broadband pump-probe spectroscopy and first-principles GW and Bethe-Salpeter equation calculations, we show semiconducting CrI3 as a prototypical 2D polaronic system with characteristic Jahn-Teller exciton polaron induced by symmetry breaking. A photogenerated electron and hole in CrI3 localize spontaneously in ∼0.9 ps and pair geminately to a Jahn-Teller exciton polaron with elongated Cr-I octahedra, large binding energy, and an unprecedentedly small exciton-exciton annihilation rate constant (∼10-20 cm3 s-1). Coherent phonon dynamics indicates the localization is mainly triggered by the coherent nuclear vibration of the I-Cr-I out-of-plane stretch mode at 128.5 ± 0.1 cm-1. The excited state Jahn-Teller exciton polaron in CrI3 broadens the realm of 2D polaron systems and reveals the decisive role of coupled electron-lattice motion on excited state properties and exciton physics in 2D semiconductors.

12.
Beilstein J Org Chem ; 19: 1372-1378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736392

RESUMO

A visible-light-induced nickel-catalyzed cross coupling of alkyl carboxylic acids with N-trifluoroethoxyphthalimide is described. Under purple light irradiation, an α-hydroxytrifluoroethyl radical generated from a photoactive electron donor-acceptor complex between Hantzsch ester and N-trifluoroethoxyphthalimide was subsequently engaged in a nickel-catalyzed coupling reaction with in situ-activated alkyl carboxylic acids. This convenient protocol does not require photocatalysts and metal reductants, providing a straightforward and efficient access to trifluoromethyl alkyl acyloins in good yields with broad substrate compatibility. The complex bioactive molecules were also compatible with this catalytic system to afford the corresponding products.

13.
Opt Express ; 30(16): 28865-28881, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299074

RESUMO

Twin-field interference-based quantum conference key agreement protocols have been proposed and have achieved good performance in terms of the key rate and transmission distance in the finite-key regime. However, its performance significantly decreases when the strict constraint is broken regarding the optical pulse intensity and probability. Here, we propose a post-matching QCKA protocol to remove this constraint while obtaining a higher key rate. Numerical results in the symmetric case show that our protocol can obtain a transmission distance 25% more than the previous asymmetric QCKA protocol when the decoy state optical pulse intensity is 1% higher than the ideal value of the constraint, and can obtain a transmission distance 100% higher when the decoy state optical pulse intensity is 10% higher than the ideal value of the constraint.

14.
Opt Express ; 30(9): 15024-15036, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473234

RESUMO

Continuous-variable quantum key distribution (CV QKD) with discrete modulation has attracted increasing attention due to its experimental simplicity, lower-cost implementation and compatibility with classical optical communication. Correspondingly, some novel numerical methods have been proposed to analyze the security of these protocols against collective attacks, which promotes key rates over one hundred kilometers of fiber distance. However, numerical methods are limited by their calculation time and resource consumption, for which they cannot play more roles on mobile platforms in quantum networks. To improve this issue, a neural network model predicting key rates in nearly real time has been proposed previously. Here, we go further and show a neural network model combined with Bayesian optimization. This model automatically designs the best architecture of neural network computing key rates in real time. We demonstrate our model with two variants of CV QKD protocols with quaternary modulation. The results show high reliability with secure probability as high as 99.15% - 99.59%, considerable tightness and high efficiency with speedup of approximately 107 in both cases. This inspiring model enables the real-time computation of unstructured quantum key distribution protocols' key rate more automatically and efficiently, which has met the growing needs of implementing QKD protocols on moving platforms.

15.
Opt Express ; 30(13): 23783-23795, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225053

RESUMO

Coherent-one-way quantum key distribution (COW-QKD), which requires a simple experimental setup and has the ability to withstand photon-number-splitting attacks, has been not only experimentally implemented but also commercially applied. However, recent studies have shown that the current COW-QKD system is insecure and can only distribute secret keys safely within 20 km of the optical fiber length. In this study, we propose a practical implementation of COW-QKD by adding a two-pulse vacuum state as a new decoy sequence. This proposal maintains the original experimental setup as well as the simplicity of its implementation. Utilizing detailed observations on the monitoring line to provide an analytical upper bound on the phase error rate, we provide a high-performance COW-QKD asymptotically secure against coherent attacks. This ensures the availability of COW-QKD within 100 km and establishes theoretical foundations for further applications.

16.
Nanotechnology ; 33(45)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35905646

RESUMO

Flexible organic light emitting diodes (OLED) have attracted great attention in many applications. MXene based flexible transparent conductive films (TCFs) are the most promising next-generation electrodes for flexible electronics. Herein, the sandwich conductive structure of silver nanowires (AgNWs) network, new 2D nanosheets with excellent conductivity, hydrophilicity and mechanical flexibility and PEDOT:PSS contributes to a highly transparent and conductive hybrid electrode through a simple, scalable, low-cost spray method. The Ti3C2Tx/AgNWs/PEDOT-PET film shows a low sheet resistance (<30 Ω/sq) and high transmittance (>80%) at 550 nm. Flexible OLED with such hybrid anode has the maximum brightness, current efficiency and current density, as high as 10 040 cd m-2, 3.7 cd A-1and 535.5 mA cm-2, respectively. These results indicate that the novel Ti3C2Tx/AgNWs/PEDOT-PET TCFs have a great potential for high-performance flexible optoelectronic devices.

17.
Mikrochim Acta ; 190(1): 20, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512161

RESUMO

A versatile triple cascade amplification strategy was developed for ultrasensitive simultaneous detection of multiple cancer biomarkers using single particle inductively coupled plasma mass spectrometry (spICP-MS). The triple cascade amplification strategy consisted of an enhanced RecJf exonuclease-assisted target recycling amplification module, a hybridization chain reaction amplification module, and a signal amplification module based on DNA-templated multiple metal nanoclusters. In the enhanced RecJf exonuclease-assisted target recycling amplification module, the DNA bases at the 5' ends of aptamers for specific recognition of biomarkers were deliberately replaced by the corresponding RNA bases to enhance amplification efficiency. The signal amplification module based on DNA-templated multiple metal nanoclusters was innovatively used to amplify the signals measured by spICP-MS and at the same time effectively suppress possible background interferences. The proposed spICP-MS platform achieved satisfactory quantitative results for both carcinoembryonic antigen (CEA) and a-fetoprotein (AFP) in human serum samples with accuracy comparable to that of the commercial ELISA kits. Moreover, it has wide dynamic ranges for both CEA (0.01-100 ng/mL) and AFP (0.01-200 ng/mL). The limit of detection for CEA and AFP was 0.6 and 0.5 pg/mL, respectively. Compared with conventional biomarkers detection methods, the proposed spICP-MS platform has the advantages of operational simplicity, ultra-high sensitivity, wide dynamic range, and low background. Therefore, it is reasonable to expect that the proposed spICP-MS platform can be further developed to be a promising alternative tool for biomarker detection in fields of clinical diagnosis and biomedical research.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Antígeno Carcinoembrionário/análise , Técnicas Biossensoriais/métodos , Biomarcadores Tumorais , alfa-Fetoproteínas , DNA/química , Exonucleases , Espectrometria de Massas , Neoplasias/diagnóstico
18.
Anal Chem ; 93(14): 5839-5848, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797890

RESUMO

The multiple-metal-nanoparticle tagging strategy has generally been applied to the multiplexed detection of multiple analytes of interest such as microRNAs (miRNAs). Herein, it was used for the first time to improve both the specificity and sensitivity of a novel mass spectroscopic platform for miRNA detection. The mass spectroscopic platform was developed through the integration of the ligation reaction, hybridization chain reaction amplification, multiple-metal-nanoparticle tagging, and inductively coupled plasma mass spectrometry. The high specificity resulted from the adoption of the ligation reaction is further enhanced by the multiple-metal-nanoparticle tagging strategy. The combination of hybridization chain reaction amplification and metal nanoparticle tagging endows the proposed platform with the feature of high sensitivity. The proposed mass spectrometric platform achieved quite satisfactory quantitative results for Let-7a in real-world cell line samples with accuracy comparable to that of the real-time quantitative reverse-transcriptase polymerase chain reaction method. Its limit of detection and limit of quantification for Let-7a were experimentally determined to be about 0.5 and 10 fM, respectively. Furthermore, due to the unique way of utilizing the multiple-metal-nanoparticle tagging strategy, the proposed platform can unambiguously discriminate between the target miRNA and nontarget ones with single-nucleotide polymorphisms based on their response patterns defined by the relative mass spectral intensities among the multiple tagged metal elements and can also provide location information of the mismatched bases. Its unique advantages over conventional miRNA detection methods make the proposed platform a promising and alternative tool in the fields of clinical diagnosis and biomedical research.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Limite de Detecção , Espectrometria de Massas , MicroRNAs/genética , Hibridização de Ácido Nucleico
19.
Opt Express ; 29(6): 9165-9173, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820349

RESUMO

Quantum secret sharing (QSS) is essential for multiparty quantum communication, which is one of cornerstones in the future quantum internet. However, a linear rate-distance limitation severely constrains the secure key rate and transmission distance of QSS. Here, we present a practical QSS protocol among three participants based on the differential phase shift scheme and twin field ideas for the solution of high-efficiency multiparty communication task. In contrast to a formerly proposed differential phase shift QSS protocol, our protocol can break the linear rate-distance bound, theoretically improving the secret key rate by three orders of magnitude in a 300-km-long fiber. Furthermore, the new protocol is secure against Trojan horse attacks that cannot be resisted by previous differential phase shift QSS.

20.
Opt Express ; 29(20): 32244-32255, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615300

RESUMO

Quantum secret sharing (QSS) is an essential primitive for the future quantum internet, which promises secure multiparty communication. However, developing a large-scale QSS network is a huge challenge due to the channel loss and the requirement of multiphoton interference or high-fidelity multipartite entanglement distribution. Here, we propose a three-user QSS protocol without monitoring signal disturbance, which is capable of ensuring the unconditional security. The final key rate of our protocol can be demonstrated to break the Pirandola-Laurenza-Ottaviani-Banchi bound of quantum channel and its simulated transmission distance can approach over 600 km using current techniques. Our results pave the way to realizing high-rate and large-scale QSS networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA