Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 140: 106573, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374259

RESUMO

Mygalomorph spiders of the family Theraphosidae, known to the broader public as tarantulas, are among the most recognizable arachnids on earth due to their large size and widespread distribution. Their use of urticating setae is a notable adaptation that has evolved exclusively in certain New World theraphosids. Thus far, the evolutionary history of Theraphosidae remains poorly understood; theraphosid systematics still largely relies on morphological datasets, which suffer from high degrees of homoplasy, and traditional Sanger sequencing of preselected genes failed to provide strong support for supra-generic clades. In this study, we provide the first robust phylogenetic hypothesis of theraphosid evolution inferred from transcriptome data. A core ortholog approach was used to generate a phylogeny from 2460 orthologous genes across 25 theraphosid genera, representing all of the major theraphosid subfamilies, except Selenogyrinae. Our phylogeny recovers an unprecedented monophyletic group that comprises the vast majority of New World theraphosid subfamilies including Aviculariinae, Schismatothelinae and Theraphosinae. Concurrently, we provide additional evidence for the integrity of questionable subfamilies, such as Poecilotheriinae and Psalmopoeinae, and support the non-monophyly of Ischnocolinae. The deeper relationships between almost all subfamilies are confidently inferred. We also used our phylogeny in tandem with published morphological data to perform ancestral state analyses on urticating setae, and contextualize our reconstructions with emphasis on the complex evolutionary history of the trait.


Assuntos
Filogenia , Sensilas/anatomia & histologia , Aranhas/anatomia & histologia , Aranhas/genética , Transcriptoma/genética , Animais , Funções Verossimilhança , Sensilas/ultraestrutura , Aranhas/classificação
2.
Mol Phylogenet Evol ; 125: 213-219, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29635024

RESUMO

Psechrids are an enigmatic family of S.E. Asian spiders. This small family builds sheet webs and even orb webs, yet unlike other orb weavers, its putative relatives are largely cursorial lycosoids - a superfamily of approximately seven spider families related to wolf spiders. The orb web was invented at least twice: first in a very ancient event, and then second, within this clade of wolf-like spiders that reinvented this ability. Exactly how the spiders modified their silks, anatomy, and behaviors to accomplish this transition requires that we identify their precise evolutionary origins - yet, thus far, molecular phylogenies show poor support and considerable disagreement. Using phylogenomic methods based on whole body transcriptomes for psechrids and their putative relatives, we have recovered a well-supported phylogeny that places the Psechridae sister to the Ctenidae - a family of mostly cursorial habits but that, as with all psechrids, retains some cribellate species. Although this position reinforces the prevailing view that orb weaving in psechrids is largely a consequence of convergence, it is still possible that some components of this behavior are retained or resurrected in common with more distant true orb weaving ancestors.


Assuntos
Evolução Biológica , Seda/biossíntese , Aranhas/classificação , Animais , Evolução Molecular , Feminino , Genoma , Funções Verossimilhança , Filogenia , Transcriptoma/genética
3.
Viruses ; 14(4)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35458432

RESUMO

Massive amounts of data from nucleic acid sequencing have changed our perspective about diversity and dynamics of marine viral communities. Here, we summarize recent metatranscriptomic and metaviromic studies targeting predominantly RNA viral communities. The analysis of RNA viromes reaffirms the abundance of lytic (+) ssRNA viruses of the order Picornavirales, but also reveals other (+) ssRNA viruses, including RNA bacteriophages, as important constituents of extracellular RNA viral communities. Sequencing of dsRNA suggests unknown diversity of dsRNA viruses. Environmental metatranscriptomes capture the dynamics of ssDNA, dsDNA, ssRNA, and dsRNA viruses simultaneously, unravelling the full complexity of viral dynamics in the marine environment. RNA viruses are prevalent in large size fractions of environmental metatranscriptomes, actively infect marine unicellular eukaryotes larger than 3 µm, and can outnumber bacteriophages during phytoplankton blooms. DNA and RNA viruses change abundance on hourly timescales, implying viral control on a daily temporal basis. Metatranscriptomes of cultured protists host a diverse community of ssRNA and dsRNA viruses, often with multipartite genomes and possibly persistent intracellular lifestyles. We posit that RNA viral communities might be more diverse and complex than formerly anticipated and that the influence they exert on community composition and global carbon flows in aquatic ecosystems may be underestimated.


Assuntos
Ecossistema , Vírus de RNA , Eucariotos/genética , Genoma Viral , Genômica , Filogenia , Vírus de RNA/genética , RNA de Cadeia Dupla , Transcriptoma
4.
Microbiome ; 10(1): 4, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027090

RESUMO

BACKGROUND: Metal corrosion in seawater has been extensively studied in surface and shallow waters. However, infrastructure is increasingly being installed in deep-sea environments, where extremes of temperature, salinity, and high hydrostatic pressure increase the costs and logistical challenges associated with monitoring corrosion. Moreover, there is currently only a rudimentary understanding of the role of microbially induced corrosion, which has rarely been studied in the deep-sea. We report here an integrative study of the biofilms growing on the surface of corroding mooring chain links that had been deployed for 10 years at ~2 km depth and developed a model of microbially induced corrosion based on flux-balance analysis. METHODS: We used optical emission spectrometry to analyze the chemical composition of the mooring chain and energy-dispersive X-ray spectrometry coupled with scanning electron microscopy to identify corrosion products and ultrastructural features. The taxonomic structure of the microbiome was determined using shotgun metagenomics and was confirmed by 16S amplicon analysis and quantitative PCR of the dsrB gene. The functional capacity was further analyzed by generating binned, genomic assemblies and performing flux-balance analysis on the metabolism of the dominant taxa. RESULTS: The surface of the chain links showed intensive and localized corrosion with structural features typical of microbially induced corrosion. The microbiome on the links differed considerably from that of the surrounding sediment, suggesting selection for specific metal-corroding biofilms dominated by sulfur-cycling bacteria. The core metabolism of the microbiome was reconstructed to generate a mechanistic model that combines biotic and abiotic corrosion. Based on this metabolic model, we propose that sulfate reduction and sulfur disproportionation might play key roles in deep-sea corrosion. CONCLUSIONS: The corrosion rate observed was higher than what could be expected from abiotic corrosion mechanisms under these environmental conditions. High corrosion rate and the form of corrosion (deep pitting) suggest that the corrosion of the chain links was driven by both abiotic and biotic processes. We posit that the corrosion is driven by deep-sea sulfur-cycling microorganisms which may gain energy by accelerating the reaction between metallic iron and elemental sulfur. The results of this field study provide important new insights on the ecophysiology of the corrosion process in the deep sea.


Assuntos
Microbiota , Aço , Bactérias/genética , Bactérias/metabolismo , Biofilmes , Corrosão , Aço/química , Sulfatos/metabolismo
5.
PeerJ ; 9: e11162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868819

RESUMO

The study of biogeography seeks taxa that share a key set of characteristics, such as timescale of diversification, dispersal ability, and ecological lability. Tarantulas are ideal organisms for studying evolution over continental-scale biogeography given their time period of diversification, their mostly long-lived sedentary lives, low dispersal rate, and their nevertheless wide circumtropical distribution. In tandem with a time-calibrated transcriptome-based phylogeny generated by PhyloBayes, we estimate the ancestral ranges of ancient tarantulas using two methods, DEC+j and BBM, in the context of their evolution. We recover two ecologically distinct tarantula lineages that evolved on the Indian Plate before it collided with Asia, emphasizing the evolutionary significance of the region, and show that both lineages diversified across Asia at different times. The most ancestral tarantulas emerge on the Americas and Africa 120 Ma-105.5 Ma. We provide support for a dual colonization of Asia by two different tarantula lineages that occur at least 20 million years apart, as well as a Gondwanan origin for the group. We determine that their current distributions are attributable to a combination of Gondwanan vicariance, continental rafting, and geographic radiation. We also discuss emergent patterns in tarantula habitat preferences through time.

6.
PLoS One ; 9(5): e97425, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24819937

RESUMO

The primate α-/θ-defensin multigene family encodes versatile endogenous cationic and amphipathic peptides that have broad-spectrum antibacterial, antifungal and antiviral activity. Although previous studies have reported that α-/θ-defensin (DEFA/DEFT) genes are under birth-and-death evolution with frequent duplication and rapid evolution, the phylogenetic relationships of the primate DEFA/DEFT genes; the genetic bases for the existence of similar antimicrobial spectra among closely related species; and the evolutionary processes involved in the emergence of cyclic θ-defensins in Old World monkeys and their subsequent loss of function in humans, chimpanzees and gorillas require further investigation. In this study, the DEFA/DEFT gene repertoires from primate and treeshrew were collected, followed by detailed phylogenetic, sequence and structure, selection pressure and comparative genomics analyses. All treeshrew, prosimian and simian DEFA/DEFT genes are grouped into two major clades, which are tissue-specific for enteric and myeloid defensins in simians. The simian enteric and myeloid α-defensins are classified into six functional gene clusters with diverged sequences, variable structures, altered functional constraints and different selection pressures, which likely reflect the antimicrobial spectra among closely related species. Species-specific duplication or pseudogenization within each simian cluster implies that the antimicrobial spectrum is ever-shifting, most likely challenged by the ever-changing pathogen environment. The DEFT evolved from the myeloid DEFA8. The prosegment of θ-defensin is detected with adaptive changes coevolving with the new protein fold of mature peptide, coincident with the importance of the prosegment for the correct folding of the mature peptide. Lastly, a less-is-hitchhiking hypothesis was proposed as a possible explanation for the expansion of pseudogene DEFTP and the loss of functional DEFT, where the gain or loss of the hitchhiker is determined by its adjacent driver gene during the birth-and-death evolutionary process.


Assuntos
Defensinas/genética , Evolução Molecular , Família Multigênica , Primatas/genética , alfa-Defensinas/genética , Sequência de Aminoácidos , Animais , Defensinas/química , Genômica , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Filogenia , Multimerização Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Eletricidade Estática , alfa-Defensinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA