Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 63(4): 045006, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29345242

RESUMO

Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.


Assuntos
Algoritmos , Fluordesoxiglucose F18/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Imagem Corporal Total/métodos , Artefatos , Humanos , Imagem Multimodal/métodos , Tomografia Computadorizada por Raios X/métodos
2.
Phys Med Biol ; 60(19): 7437-60, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26352168

RESUMO

For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images.Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagem Multimodal/métodos , Doses de Radiação , Razão Sinal-Ruído
3.
Phys Med Biol ; 60(15): 5733-51, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26158503

RESUMO

Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Funções Verossimilhança , Hepatopatias/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Antropometria , Teorema de Bayes , Humanos , Interpretação de Imagem Assistida por Computador , Hepatopatias/patologia , Probabilidade
4.
Med Phys ; 41(11): 112507, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370666

RESUMO

PURPOSE: Three-dimensional (3D) dosimetry has the potential to provide better prediction of response of normal tissues and tumors and is based on 3D estimates of the activity distribution in the patient obtained from emission tomography. Dose-volume histograms (DVHs) are an important summary measure of 3D dosimetry and a widely used tool for treatment planning in radiation therapy. Accurate estimates of the radioactivity distribution in space and time are desirable for accurate 3D dosimetry. The purpose of this work was to develop and demonstrate the potential of penalized SPECT image reconstruction methods to improve DVHs estimates obtained from 3D dosimetry methods. METHODS: The authors developed penalized image reconstruction methods, using maximum a posteriori (MAP) formalism, which intrinsically incorporate regularization in order to control noise and, unlike linear filters, are designed to retain sharp edges. Two priors were studied: one is a 3D hyperbolic prior, termed single-time MAP (STMAP), and the second is a 4D hyperbolic prior, termed cross-time MAP (CTMAP), using both the spatial and temporal information to control noise. The CTMAP method assumed perfect registration between the estimated activity distributions and projection datasets from the different time points. Accelerated and convergent algorithms were derived and implemented. A modified NURBS-based cardiac-torso phantom with a multicompartment kidney model and organ activities and parameters derived from clinical studies were used in a Monte Carlo simulation study to evaluate the methods. Cumulative dose-rate volume histograms (CDRVHs) and cumulative DVHs (CDVHs) obtained from the phantom and from SPECT images reconstructed with both the penalized algorithms and OS-EM were calculated and compared both qualitatively and quantitatively. The STMAP method was applied to patient data and CDRVHs obtained with STMAP and OS-EM were compared qualitatively. RESULTS: The results showed that the penalized algorithms substantially improved the CDRVH and CDVH estimates for large organs such as the liver compared to optimally postfiltered OS-EM. For example, the mean squared errors (MSEs) of the CDRVHs for the liver at 5 h postinjection obtained with CTMAP and STMAP were about 15% and 17%, respectively, of the MSEs obtained with optimally filtered OS-EM. For the CDVH estimates, the MSEs obtained with CTMAP and STMAP were about 16% and 19%, respectively, of the MSEs from OS-EM. For the kidneys and renal cortices, larger residual errors were observed for all algorithms, likely due to partial volume effects. The STMAP method showed promising qualitative results when applied to patient data. CONCLUSIONS: Penalized image reconstruction methods were developed and evaluated through a simulation study. The study showed that the MAP algorithms substantially improved CDVH estimates for large organs such as the liver compared to optimally postfiltered OS-EM reconstructions. For small organs with fine structural detail such as the kidneys, a large residual error was observed for both MAP algorithms and OS-EM. While CTMAP provided marginally better MSEs than STMAP, given the extra effort needed to handle misregistration of images at different time points in the algorithm and the potential impact of residual misregistration, 3D regularization methods, such as that used in STMAP, appear to be a more practical choice.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Radiometria/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Simulação por Computador , Humanos , Rim/diagnóstico por imagem , Córtex Renal/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Compostos Radiofarmacêuticos/uso terapêutico , Software
5.
Phys Med Biol ; 58(11): 3631-47, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23648371

RESUMO

In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Compostos Radiofarmacêuticos/uso terapêutico , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Método de Monte Carlo , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica
6.
IEEE Trans Med Imaging ; 30(6): 1169-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20952334

RESUMO

In simultaneous dual-isotope myocardial perfusion SPECT (MPS) imaging, data are simultaneously acquired to determine the distributions of two radioactive isotopes. The goal of this work was to develop penalized maximum likelihood (PML) algorithms for a novel cross-tracer prior that exploits the fact that the two images reconstructed from simultaneous dual-isotope MPS projection data are perfectly registered in space. We first formulated the simultaneous dual-isotope MPS reconstruction problem as a joint estimation problem. A cross-tracer prior that couples voxel values on both images was then proposed. We developed an iterative algorithm to reconstruct the MPS images that converges to the maximum a posteriori solution for this prior based on separable surrogate functions. To accelerate the convergence, we developed a fast algorithm for the cross-tracer prior based on the complete data OS-EM (COSEM) framework. The proposed algorithm was compared qualitatively and quantitatively to a single-tracer version of the prior that did not include the cross-tracer term. Quantitative evaluations included comparisons of mean and standard deviation images as well as assessment of image fidelity using the mean square error. We also evaluated the cross tracer prior using a three-class observer study with respect to the three-class MPS diagnostic task, i.e., classifying patients as having either no defect, reversible defect, or fixed defects. For this study, a comparison with conventional ordered subsets-expectation maximization (OS-EM) reconstruction with postfiltering was performed. The comparisons to the single-tracer prior demonstrated similar resolution for areas of the image with large intensity changes and reduced noise in uniform regions. The cross-tracer prior was also superior to the single-tracer version in terms of restoring image fidelity. Results of the three-class observer study showed that the proposed cross-tracer prior and the convergent algorithms improved the image quality of dual-isotope MPS images compared to OS-EM.


Assuntos
Algoritmos , Circulação Coronária/fisiologia , Imagem de Perfusão do Miocárdio/métodos , Miocárdio/metabolismo , Radioisótopos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Coração/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Funções Verossimilhança , Modelos Cardiovasculares , Imagens de Fantasmas , Radioisótopos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
7.
Inf Process Med Imaging ; 19: 418-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17354714

RESUMO

Brain MR image segmentation is an important research topic in medical image analysis area. In this paper, we propose an active contour model for brain MR image segmentation, based on a generalized level set formulation of the Mumford-Shah functional. The model embeds explicitly gradient information into the Mumford-Shah functional, and incorporates in a generic framework both regional and gradient information into segmentation process simultaneously. The proposed method has been evaluated on real brain MR images and the obtained results have shown the desirable segmentation performance.


Assuntos
Algoritmos , Inteligência Artificial , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA