RESUMO
MOTIVATION: The process of analyzing high throughput sequencing data often requires the identification and extraction of specific target sequences. This could include tasks, such as identifying cellular barcodes and UMIs in single-cell data, and specific genetic variants for genotyping. However, existing tools, which perform these functions are often task-specific, such as only demultiplexing barcodes for a dedicated type of experiment, or are not tolerant to noise in the sequencing data. RESULTS: To overcome these limitations, we developed Flexiplex, a versatile and fast sequence searching and demultiplexing tool for omics data, which is based on the Levenshtein distance and thus allows imperfect matches. We demonstrate Flexiplex's application on three use cases, identifying cell-line-specific sequences in Illumina short-read single-cell data, and discovering and demultiplexing cellular barcodes from noisy long-read single-cell RNA-seq data. We show that Flexiplex achieves an excellent balance of accuracy and computational efficiency compared to leading task-specific tools. AVAILABILITY AND IMPLEMENTATION: Flexiplex is available at https://davidsongroup.github.io/flexiplex/.