Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D471-D479, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788852

RESUMO

Protein post-translational modifications (PTMs) play an important role in different cellular processes. In view of the importance of PTMs in cellular functions and the massive data accumulated by the rapid development of mass spectrometry (MS)-based proteomics, this paper presents an update of dbPTM with over 2 777 000 PTM substrate sites obtained from existing databases and manual curation of literature, of which more than 2 235 000 entries are experimentally verified. This update has manually curated over 42 new modification types that were not included in the previous version. Due to the increasing number of studies on the mechanism of PTMs in the past few years, a great deal of upstream regulatory proteins of PTM substrate sites have been revealed. The updated dbPTM thus collates regulatory information from databases and literature, and merges them into a protein-protein interaction network. To enhance the understanding of the association between PTMs and molecular functions/cellular processes, the functional annotations of PTMs are curated and integrated into the database. In addition, the existing PTM-related resources, including annotation databases and prediction tools are also renewed. Overall, in this update, we would like to provide users with the most abundant data and comprehensive annotations on PTMs of proteins. The updated dbPTM is now freely accessible at https://awi.cuhk.edu.cn/dbPTM/.


Assuntos
Bases de Dados de Proteínas , Redes Reguladoras de Genes , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Software , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Humanos , Internet , Camundongos , Modelos Moleculares , Anotação de Sequência Molecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/genética , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 50(D1): D460-D470, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850155

RESUMO

The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.


Assuntos
Peptídeos Antimicrobianos , Bases de Dados Factuais , Software , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Genômica , Fases de Leitura Aberta , Conformação Proteica , Proteômica
3.
J Colloid Interface Sci ; 458: 293-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26245718

RESUMO

Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications.


Assuntos
Tecido Adiposo , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Magnetismo , Nanosferas/química , Engenharia Tecidual/métodos , Água/química , Células Cultivadas , Humanos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA