Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 23(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857510

RESUMO

To study the potential application of metasurfaces in lens technology, we propose a dendritic meta-molecule surface (also referred to as a dendritic metasurface) and realize the focusing effect in the visible spectrum through simulations and experiments. Using asymmetric dendritic structures, this metasurface can achieve distinct broadband anomalous reflection and refraction. When the metasurface is rotated by 180° around the z axis, anomalous reflection and refraction in vertically incident optical waves are in opposite directions. Considering this feature, a metasurface is designed to achieve a prominent plate-focusing effect. Samples with a transmission peak of green light at 555 nm, yellow light at 580 nm, and red light at 650 nm were prepared using bottom-up electrochemical deposition, and the focus intensity of approximately 10% and focal length of almost 600 µm were experimentally demonstrated.


Assuntos
Luz , Modelos Teóricos , Estrutura Molecular
2.
Nat Struct Mol Biol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724718

RESUMO

Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and is important for targeted delivery of biologics. Here we describe the design of octahedral non-porous nanoparticles with a targeting antibody on the two-fold symmetry axis, a designed trimer programmed to disassemble below a tunable pH transition point on the three-fold axis, and a designed tetramer on the four-fold symmetry axis. Designed non-covalent interfaces guide cooperative nanoparticle assembly from independently purified components, and a cryo-EM density map closely matches the computational design model. The designed nanoparticles can package protein and nucleic acid payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between 5.9 and 6.7. The ability to incorporate almost any antibody into a non-porous pH-dependent nanoparticle opens up new routes to antibody-directed targeted delivery.

3.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131615

RESUMO

Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and important for targeted delivery of biologics. We describe the design of octahedral non-porous nanoparticles with the three symmetry axes (four-fold, three-fold, and two-fold) occupied by three distinct protein homooligomers: a de novo designed tetramer, an antibody of interest, and a designed trimer programmed to disassemble below a tunable pH transition point. The nanoparticles assemble cooperatively from independently purified components, and a cryo-EM density map reveals that the structure is very close to the computational design model. The designed nanoparticles can package a variety of molecular payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between to 5.9-6.7. To our knowledge, these are the first designed nanoparticles with more than two structural components and with finely tunable environmental sensitivity, and they provide new routes to antibody-directed targeted delivery.

4.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398153

RESUMO

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between the two closely related integrin proteins and other RGD integrins, stabilize specific conformational states, and have sufficient stability enabling tissue restricted administration could have considerable therapeutic utility. Existing small molecules and antibody inhibitors do not have all of these properties, and hence there is a need for new approaches. Here we describe a method for computationally designing hyperstable RGD-containing miniproteins that are highly selective for a single RGD integrin heterodimer and conformational state, and use this strategy to design inhibitors of αvß6 and αvß8 with high selectivity. The αvß6 and αvß8 inhibitors have picomolar affinities for their targets, and >1000-fold selectivity over other RGD integrins. CryoEM structures are within 0.6-0.7Å root-mean-square deviation (RMSD) to the computational design models; the designed αvß6 inhibitor and native ligand stabilize the open conformation in contrast to the therapeutic anti-αvß6 antibody BG00011 that stabilizes the bent-closed conformation and caused on-target toxicity in patients with lung fibrosis, and the αvß8 inhibitor maintains the constitutively fixed extended-closed αvß8 conformation. In a mouse model of bleomycin-induced lung fibrosis, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics when delivered via oropharyngeal administration mimicking inhalation, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.

5.
Nat Commun ; 14(1): 5660, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704610

RESUMO

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvß6 and αvß8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvß6 and αvß8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvß6 and the αvß8 integrins. In a lung fibrosis mouse model, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.


Assuntos
Integrinas , Fibrose Pulmonar , Animais , Camundongos , Membrana Celular , Microscopia Crioeletrônica , Modelos Animais de Doenças
6.
Cell Rep Med ; 3(10): 100780, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206752

RESUMO

Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.


Assuntos
HIV-1 , Nanopartículas , Vacinas , Anticorpos Anti-HIV , Formação de Anticorpos , Glicoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA