Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922672

RESUMO

We conducted a detailed investigation of the influence of the material properties of dynamic polymer network coatings on their self-healing and damage-reporting performance. A series of reversible polyacrylate urethane networks containing the damage-reporting diarylbibenzofuranone unit were synthesized, and their material properties (e.g., indentation modulus, hardness modulus, and glass-transition temperature) were measured conducting nanoindentation and differential scanning calorimetry experiments. The damage-reporting and self-healing performances of the dynamic polymer network coatings exhibited opposite tendencies with respect to the material properties of the polymer network coatings. Soft polymer network coatings with low glass-transition temperature (~10 °C) and indentation hardness (20 MPa) exhibited better self-healing performance (almost 100%) but two times worse damage-reporting properties than hard polymer network coatings with high glass-transition temperature (35~50 °C) and indentation hardness (150~200 MPa). These features of the dynamic polymer network coatings are unique; they are not observed in elastomers, films, and hydrogels, whereby the polymer networks are bound to the substrate surface. Evidence indicates that controlling the polymer's physical properties is a key factor in designing high-performance self-healing and damage-reporting polymer coatings based on mechanophores.

2.
Langmuir ; 34(23): 6737-6747, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29791160

RESUMO

Measurement of the interaction force between two materials provides important information on various properties, such as adsorption, binding, or compatibility for coatings, adhesion, and composites. The interaction forces of zwitterionic and ionic monomers with graphite platelets (G) and reduced graphene oxide (rGO) surfaces were systematically investigated by atomic force microscopy (AFM) in air and water. The monomers examined were 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate (MPC), [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBE), [2-(acryloyloxy)ethyl]trimethylammonium chloride (ATC), and 2-methyl-2-propene-1-sulfonic acid sodium (MSS). The AFM studies revealed that MSS and SBE monomers with sulfonate units have stronger interaction forces with G surface in air and that MPC and ATC monomers with quaternary ammonium units have higher interaction forces in water. In the case of rGO surface, the monomers with quaternary ammonium units showed stronger interactions regardless of the medium. These interactions could be rationalized by the interaction mechanism between the monomers with graphene surfaces, such as cation-π for MPC and ATC and anion-π for MSS and SBE. Overall, cation-π interactions were effective in water, whereas anion-π interactions are effective in air with G surface. The adhesion values of MPC, SBE, ATC, and MSS on rGO were lower than the values measured on G surface. Among the monomers, MPC showed the highest dispersibility for aqueous graphene dispersions. Further, the adsorption of MPC on G and rGO surfaces was verified by high-resolution transmission electron microscopy and X-ray diffraction patterns.

3.
Macromol Rapid Commun ; 39(24): e1800689, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30387223

RESUMO

Development of polymeric materials capable of self-healing at low temperatures is an important issue since their mechanical strength and self-healing performance are often in conflict with each other. Herein, random copolymers with self-healing capability in a wide temperature range prepared from 2-(dimethylamino)ethyl methacrylate (DMAEMA), glyceryl monomethacrylate (GlyMA), and butyl methacrylate monomers via free-radical polymerization and subsequent cross-linking with hexamethylene diisocyanate are reported. Wound closure is facilitated by swelling below the lower critical solution temperature or by heating above the glass transition temperature (T g ) of the polymer. GlyMA units form metal-ligand coordination complexes with dibutyltin dilaurate, leading to the formation of new carbonate bonds under ambient CO2 and H2 O conditions. Although swelling/heating reduces the polymer's mechanical strength, it is fully restored following chemical re-bonding/drying at room temperature. The swelling and degree of scratch healing are affected by pH, temperature, and the DMAEMA content.


Assuntos
Polímeros/química , Glicerídeos/química , Concentração de Íons de Hidrogênio , Metacrilatos/química , Polimerização , Temperatura
4.
Langmuir ; 32(36): 9223-8, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27584798

RESUMO

We report stimuli-triggered fabrication of polymersomes from water-in-oil-in-water (W/O/W) multiple double emulsion droplets and the dual-stimuli (temperature and UV) responsive behavior of corresponding polymersomes. The polymersome comprises Tween20, cholesterol, and poly(styrene)-block-poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl), i.e., PS-b-P(NIPAAm-co-SPO), synthesized by stepwise reversible addition-fragmentation chain transfer (RAFT) polymerization. Amphiphilic PS-b-P(NIPAAm-co-SPO) copolymer forms micelles in water above the critical micelle concentration (CMC) of 0.7 g/L at 23 °C. The micelles show a temperature-driven aggregation among the micelles above 30.6 °C, confirmed by a decrease in UV-vis transmittance. The micelles also show a color change without colloidal instability under 365 nm UV at room temperature. PS-b-P(NIPAAm-co-SPO) plays not only a role of the polymeric surfactant in the preparation of W/O/W multiple double emulsions but also an important role in the stimuli-triggered transformation from multi- to single-core double emulsion droplets under heat and UV light irradiation. It was found that the morphological transformation of W/O/W multiple double emulsions by UV irradiation was much faster than temperature change. Dual-responsive polymersomes were simply prepared after solvent removal and they exhibit stable and reversible size and color variations under temperature and UV-visible changes, respectively.

5.
J Nanosci Nanotechnol ; 15(4): 2702-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26353484

RESUMO

We report the synthesis of monodisperse calcium carbonate (CaCO3) (nano)particles having either a cubic or spherical structure by reacting calcium nitrate with either sodium carbonate or citric acid, respectively, in the presence of cetyltrimethylammonium bromide (CTAB) via the sonication method. For comparison, CaCO3 (nano)particles were synthesized by the same method in the absence of CTAB and also via the standard hydrothermal method using CTAB. The synthesized CaCO3 (nano)particles were analyzed by various physico-chemical characterization techniques such as X-ray diffraction (XRD), Fourier transform infra-red spectroscopy, thermogravimetric analysis, and scanning electron microscopy with energy-dispersive spectrometer. It was found that the CaCO3 (nano)particles were highly pure with high crystallinity and exhibited the calcite polymorph phase as revealed by the XRD analysis. In addition, the analytical results showed that the (nano)particles prepared in the presence of CTAB by the sonication method had high structural ordering and no agglomeration as compared to the (nano)particles prepared by the hydrothermal method. Therefore, our sonication method is a new way to prepare shape-controlled CaCO3 (nano)particles under mild reaction conditions.


Assuntos
Carbonato de Cálcio/química , Compostos de Cetrimônio/química , Nanopartículas/química , Sonicação/métodos , Cetrimônio , Nanotecnologia
6.
Langmuir ; 30(31): 9577-83, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25046025

RESUMO

The photoresponsive phase separation of a poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl-co-allyl-2-(2,6-bis((E)-4-(diphenylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate) random copolymer, i.e., poly(NIPAAm-co-SPO-co-fluorophore), in water-in-oil (W/O) droplets is described. The photoresponsive aqueous droplets were generated in the coflow regime of a simple tubular microfluidic device. The phase separation of the copolymer in the W/O droplets was induced by UV light at 365 nm and was affected significantly by the presence of 2,2-diethoxyacetophenone (DEAP) and sorbitan monooleate (Span 80). When the droplets were subjected to UV irradiation for more than 2 min, the phase-separated copolymer was transferred completely from the aqueous droplet to the continuous phase of hexadecane. The phase separation arises from the photoisomerization shifting the spiro to the merocyanine form of the SPO pendant group in the copolymer, which in turn reduces the hydrophilicity of the copolymer via attractive hydrogen-bonding interactions between the merocyanine group and hydrophobic additives, i.e., Span 80, DEAP, and some stable fragments derived from the photocleavage of DEAP under UV irradiation. These interactions cause the copolymer to associate with the additives and then accelerate the phase separation of the copolymer and subsequent phase transfer of copolymer aggregates. The separate effects of DEAP and Span 80 were also investigated by UV spectrophotometric analysis of the rate coefficient of the reverse transformation (merocyanine to spiro) of the photochromic monomer. We propose a mechanism of phase separation of the copolymer in the W/O droplet based on the NMR and GC-MASS analyses of DEAP.

7.
Int J Biol Macromol ; 254(Pt 3): 127984, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951429

RESUMO

Developing polymeric materials with remarkable mechanical properties and fast self-healing performance even at low temperatures is challenging. Herein, the polymeric nanocomposites containing silane-treated cellulose nanocrystals (SCNC) with ultrafast self-healing and exceptional mechanical characteristics were developed even at low temperatures. First, CNC is modified with a cyclic silane coupling agent using an eco-friendly chemical vapor deposition method. The nanocomposite was then fabricated by blending SCNC with matrix prepolymer, prepared from monomers that possess lower critical solution temperature, followed by the inclusion of dibutyltin dilaurate and hexamethylene diisocyanate. The self-healing capability of the novel SCNC/polymer nanocomposites was enhanced remarkably by increasing the content of SCNC (0-3 wt%) and reaching (≥99 %) at temperatures (5 & 25 °C) within <20 min. Moreover, SCNC-3 showed a toughness of (2498 MJ/m3) and SCNC-5 displayed a robust tensile strength of (22.94 ± 0.4 MPa) whereas SCNC-0 exhibited a lower tensile strength (7.4 ± 03 MPa) and toughness of (958 MJ/m3). Additionally, the nanocomposites retain their original mechanical properties after healing at temperatures (5 & 25 °C) owing to the formation of hydrogen bonds via incorporation of the SCNC. These novel SCNC-based self-healable nanocomposites with tunable mechanical properties offer novel insight into preparing damage and temperature-responsive flexible and wearable devices.


Assuntos
Nanocompostos , Nanopartículas , Temperatura , Silanos , Celulose/química , Polímeros/química , Nanocompostos/química , Nanopartículas/química
8.
Biol Pharm Bull ; 36(3): 346-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23258078

RESUMO

The role of cyclohexane diester analogues in the formation of melanin has been recently reported. In the present study, we investigated the inhibitory effect of cyclohexanediol bis-ethylhexanoate (CHEH) on melanogenesis in B16 melanoma cells and on UV-B-induced pigmentation in human skin. CHEH significantly reduced the melanin content in a dose-dependent manner, without cytotoxic effects at the effective concentrations. Moreover, CHEH dose-dependently inhibited tyrosinase activity in B16 melanoma cells, as confirmed by Western blot analysis of the tyrosinase protein levels. However, tyrosinase transcript levels remained unchanged under the same experimental conditions. These results indicate that CHEH inhibited melanogenesis in B16 melanoma cells by regulating tyrosinase activity at the post-transcriptional level. On the other hand, in a cell-free system, CHEH did not inhibit tyrosinase activity. This indicated that CHEH suppressed the pigmentation of melanocytes by indirectly regulating tyrosinase activity. Finally, in a clinical trial, a cream containing 1.0% CHEH showed good whitening effect on UV-induced pigmented human skin without adverse effects. In conclusion, we suggest that CHEH may be an effective inhibitor of melanogenesis and useful effects in the treatment of hyperpigmented disorders.


Assuntos
Caproatos/farmacologia , Cicloexanos/farmacologia , Melaninas/antagonistas & inibidores , Pigmentação da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Humanos , Interferon Tipo I/genética , Oxirredutases Intramoleculares/genética , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Camundongos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/genética , Proteínas da Gravidez/genética , RNA Mensageiro/análise , Pigmentação da Pele/efeitos da radiação
9.
RSC Adv ; 13(50): 35050-35064, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38046629

RESUMO

Recently, there has been a significant increase in academic and industrial interest in self-healing polymers (SHPs) due to their remarkable ability to regenerate scratched surfaces and materials of astronomical significance. Scientists have been inspired by the magical repairing mechanism of the living world. They transformed the fiction of self-healing into reality by designing engrossing polymeric materials that could self-repair mechanical abrasions repeatedly. As a result, the durability of the materials is remarkably improved. Thus, the idea of studying SHPs passively upholds economic and environmental sustainability. However, the critical areas of self-healing (including healing efficiency, healing mechanism, and thermo-mechanical property changes during healing) are under continuous scientific improvisation. This review highlights recent notable advances of SHPs for application in regenerating scratched surfaces with various distinctive underlying mechanisms. The primary focus of the work is aimed at discussing the impact of SHPs on scratch-healing technology. Beyond that, insights regarding scratch testing, methods of investigating polymer surfaces, wound depths, the addition of healing fillers, and the environmental conditions maintained during the healing process are reviewed thoroughly. Finally, broader future perspectives on the challenges and prospects of SHPs in healing surface scratches are discussed.

10.
RSC Adv ; 13(44): 31092-31100, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37881755

RESUMO

Control of polymer topologies is essential to determine their unique physical properties and potential applications. The polymer topologies can have a critical effect on pigment dispersion owing to their unique architectures; however, studies using polymer topologies on pigment dispersion in aqueous systems are scarce. Thus, this study proposes various topologies of polyether-based waterborne synergists, such as linear, hyperbranched, and branched cyclic structures. Specifically, we applied branched types of polyglycidols (PGs) as a synergist to provide polymer topology-dependent dispersibility for the surface-modification of Red 170 particles through adsorption and steric hindrance. The topology-controlled PG synergists (PGSs) were successfully prepared by post-polymerization modification with phthalimide and benzoyl groups. Particularly, the branched types of PGSs, branched cyclic PGS (bc-PGS), and hyperbranched PGS (hb-PGS) exhibited improved dispersibility through adsorption on top of the pigment, interaction between dispersant (BYK 190) and pigment, and steric effect. Surprisingly, hb-PGS conferred the Red 170 pigment particles with superior storage stability than that of bc-PGS despite their similar structural features. This study suggests the widespread potential application of PGSs as waterborne synergists for various dispersion applications.

11.
ACS Appl Mater Interfaces ; 15(6): 8510-8520, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722695

RESUMO

Recently, self-healing materials have evolved to recover specific functions such as electronic, magnetic, acoustic, structural or hierarchical, and biological properties. In particular, the development of self-healing protection coatings that can be applied to lens components in vision systems such as augmented reality glasses, actuators, and image and time-of-flight sensors has received intensive attention from the industry. In the present study, we designed polythiourethane dynamic networks containing a photothermal N-butyl-substituted diimmonium borate dye to demonstrate their potential applications in self-healing protection coatings for the optical components of vision systems. The optimized self-healing coating exhibited a high transmittance (∼95% in the visible-light region), tunable refractive index (up to 1.6), a moderate Abbe number (∼35), and high surface hardness (>200 MPa). When subjected to near-infrared (NIR) radiation (1064 nm), the surface temperature of the coating increased to 75 °C via the photothermal effect and self-healing of the scratched coatings occurred via a dynamic thiourethane exchange reaction. The coating was applied to a lens protector, and its self-healing performance was demonstrated. The light signal distorted by the scratched surface of the coating was perfectly restored after NIR-induced self-healing. The photoinduced self-healing process can also autonomously occur under sunlight with low energy consumption.

12.
J Microencapsul ; 29(8): 739-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22583129

RESUMO

This article describes enhanced skin permeation and UV/thermal stability of retinol emulsions by the co-stabilisation of Tween20 and biodegradable poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(ethylene oxide) (PEO-PCL-PEO) triblock copolymers having different lengths of hydrophobic PCL block. A triblock copolymer with a longer PCL block has a lower hydrophile-lipophile balance (HLB) value. Commercial Retinol 50C® (BASF Co., Ludwigshafen, Germany) was used as the source of retinol. Ultrasonication of the Retinol 50C® emulsion with the triblock copolymers led to an increase in retinol solubilisation and a decrease in average particle size of the resulting retinol emulsion. These characteristics improved skin permeation of retinol through the stratum corneum of artificial skin and subsequent proliferation of viable epidermis cell. Employment of the triblock copolymer with a longer PCL block increased both UV and thermal stabilization of the retinol. These results suggest that HLB and PCL block length are important factors to enhance the topical delivery of retinol into the skin.


Assuntos
Emulsões , Poliésteres/química , Polietilenoglicóis/química , Vitamina A/administração & dosagem , Administração Tópica , Cromatografia Líquida de Alta Pressão , Humanos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Solubilidade
13.
Chemosphere ; 286(Pt 2): 131760, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352536

RESUMO

Heavy metal ions (HMI) have attracted worldwide concern due to their serious environmental pollution which led to the risk of health conditions. From Red Malus floribunda fruits, nitrogen-doped carbon dots (N-CDs) were prepared, followed by hybrid-spherical shaped hydrogel particles (CGCDs) were prepared. The prepared CGCDs were utilized as adsorbents for HMI-(Hg(II), Cd(II), Pb(II), and Cr(III)) from water. N-CDs with about 4.0 nm in diameter were characterized by various techniques such as field emission-scanning electron microscopy (FE-SEM) and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) that confirm the presence of nitrogen, oxygen, and carbon functionalities. The prepared spherical CGCDs were characterized very well before it was used as HMI adsorbents. The sizes of the CGCDs were ranges between 20 and 300 µm and the degree of swelling was calculated as 1320 %. ATR-FTIR and X-ray diffraction analyses reveal the presence of N-CDs in CGCDs. Further, FE-SEM confirms the spherical shape morphology of CGCDs. Three different concentrations of HMI solutions were 500 mg/L, 1000 mg/L, and 1500 mg/L. Hg(II) adsorbed proficiently by CGCDs in single metal ion systems with ~72 % and almost complete removal of Hg(II) ions (99 %) in multiple metal ion systems was observed. Moreover, all metal ions Hg(II), Cd(II), Pb(II), and Cr(III) were efficiently (>70 %) removed in multiple systems by CGCDs. After HMI adsorption experiments, the elemental mapping from FE-SEM and X-ray photoelectron spectroscopy studies conveys the presence of HMI on CGCDs. This suggests that CGCDs would be a suitable adsorbent for the simultaneous removal of multiple HMI from wastewater.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Carbono , Hidrogéis , Íons , Metais Pesados/análise , Águas Residuárias , Poluentes Químicos da Água/análise
14.
Carbohydr Polym ; 296: 119973, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088012

RESUMO

The development of low-temperature self-healing polymers is crucial because high-temperature or softening conditions for rapid self-healing inevitably reduce their mechanical strength. Herein, we first report cellulose nanocrystal (CNC)/polymer nanocomposites with a rapid low-temperature self-healing performance. The nanocomposite was prepared by simple blending of grafted CNC and matrix prepolymer made from the monomers having metal-ligand coordination and lower critical solution temperature functionalities along with the presence of hexamethylene diisocyanate and dibutyltin dilaurate. Owing to the dynamic nature of both hydrogen bonds and metal-ligand coordinated covalent bonds, the resultant nanocomposites showed excellent self-healing efficiency (99 %, within 1 h) at a low temperature (5 °C) with robust mechanical properties including a high stretchability (230 %), high toughness (2538 MJ/m3), enhanced tensile strength (25.49 ± 0.02 MPa), and improved thermomechanical properties. Self-healing performance of the coordinated covalent bonds requiring active hydrogen was considerably improved by the introduction of CNCs with abundant hydrogen bonds.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Ligantes , Nanocompostos/química , Nanopartículas/química , Polímeros , Temperatura
15.
Polymers (Basel) ; 13(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301133

RESUMO

Graphene is an excellent 2D material that has extraordinary properties such as high surface area, electron mobility, conductivity, and high light transmission. Polymer composites are used in many applications in place of polymers. In recent years, the development of stable graphene dispersions with high graphene concentrations has attracted great attention due to their applications in energy, bio-fields, and so forth. Thus, this review essentially discusses the preparation of stable graphene-polymer composites/dispersions. Discussion on existing methods of preparing graphene is included with their merits and demerits. Among existing methods, mechanical exfoliation is widely used for the preparation of stable graphene dispersion, the theoretical background of this method is discussed briefly. Solvents, surfactants, and polymers that are used for dispersing graphene and the factors to be considered while preparing stable graphene dispersions are discussed in detail. Further, the direct applications of stable graphene dispersions are discussed briefly. Finally, a summary and prospects for the development of stable graphene dispersions are proposed.

16.
ACS Biomater Sci Eng ; 7(6): 2317-2328, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33872491

RESUMO

Here, biocompatible graphene (G) nanocarriers decorated with iron oxide nanoparticles (IONPs) were prepared using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and poly(ethylene glycol) monomethacrylate (PEGMA). For this, we report the use of graphite directly instead of graphene oxide or reduced graphene oxide. Graphene nanocarrier (in situ GIOPMPC) was prepared in one-pot by in situ copolymerization of MPC and PEGMA monomers in the presence of IONPs and G. GIOPMCP nanocarriers were prepared by sonication using PMPC-co-PEGMA copolymers in the presence of IONPs and G. The prepared graphene nanocarriers were thoroughly characterized by various techniques. The analyses confirmed the successful preparation of nanocarriers with even distributions of PMPC-co-PEGMA and IONPs on surface G. The IONPs were coordinated through the phosphate groups in PMPC. Excellent dispersibility of the graphene nanocarriers in water enabled drug delivery applications. The prepared nanocarriers did not show significant cytotoxicity to the thyroid cancer cells up to 8 mg/mL (IC50: 38.26 mg/mL). Thyroid cancer cells were stably transduced with a bioluminescent reporter to monitor cell cytotoxicity. Doxorubicin (DOX) was loaded onto in situ GIOPMPC nanocarriers at two different concentrations and was successfully delivered to thyroid cancer cells, resulting in strong cytotoxicity. Moreover, signaling mechanistic analyses showed apoptosis activation, inhibition of anti-apoptosis and proliferation, and increased DNA damage in the thyroid cancer cells.


Assuntos
Grafite , Neoplasias da Glândula Tireoide , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico
17.
Langmuir ; 26(23): 17975-80, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21033759

RESUMO

We present a simple fabrication of photo- and thermoresponsive microparticles with a narrow size distribution in the PDMS-based microfluidic device. The monodisperse water-in-oil (W/O) droplets of poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl) (PNIPA-SPO) were formed at the T-junction channel of the device by adjusting the flow conditions of two immiscible solutions. Subsequently, the droplets were polymerized downstream of the channel under 365 nm UV irradiation in the presence of 2,2'-diethoxyacetophenone (DEAP, photoinitiator) and N,N'-methylenebisacrylamide (MBA, monomer and cross-linker). Being photosensitive, the polymerized microparticles progressively change their color when subjected to UV-vis irradiation. Above the LCST of the copolymer, the microparticles exhibited volume shrinkage accompanied by color deterioration. In addition, the UV light-driven clustering of the PNIPA-SPO copolymer was observed within the W/O droplet in the absence of photoinitiator, which contributed to variable microstructures from Janus to acorn-like and snowman-like morphologies. This work is the first attempt to unveil the photocontrolled asymmetric particle morphology by using the photoresponsive polymer.

18.
J Nanosci Nanotechnol ; 10(10): 6912-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137823

RESUMO

Self-doped conducting core-shell poly(styrene/pyrrole) (poly(St/Py)) nanoparticles were successfully prepared by a one-pot synthetic route in both Fe(3+)-catalyzed oxidative polymerization and emulsifier-free emulsion polymerization. Modified two-stage shot-growth method was introduced to obtain higher doping level of the self-doped conducting core-shell poly(St/Py) nanoparticles. The particle size and core-shell morphology of the resulting particles before and after two-stage shot-growth were investigated by SEM and TEM analyses. Surface charge density of the particles highly increased after two-stage shot-growth and was measured by zeta-potential analysis. The self-doped core-shell nanoparticles showed a high conductivity after two-stage shot-growth.

19.
J Nanosci Nanotechnol ; 10(10): 6944-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137830

RESUMO

Polythiophene/poly(sodium 4-styrene sulfonate) (PT/PSS) composite nanoparticles having different particle size were prepared by Fe(3+)-catalyzed oxidative polymerization in aqueous medium. This facile method includes a FeCl3/H2O2 (catalyst/oxidant) combination system, which guarantees a high conversion (more than 95%) of thiophene monomers in various concentration of poly(styrene sulfonate) (PSS) with only a trace of FeCl3. Particle size of PT/PSS composite nanoparticles decreased from 134 nm to 26 nm as the concentration of PSS and H2O2 increased, and which was confirmed by SEM and CHDF analyses. The poly(ethylene terephthalate) (PET) film coated with PT/PSS was transparent and showed a high conductivity in a dried state. The sheet resistivity decreased as the ratio of PT to PSS increased. Photoluminescence property of the PT/PSS composite nanoparticles was also investigated.

20.
Colloids Surf B Biointerfaces ; 65(1): 61-8, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18400473

RESUMO

A series of poly(ethylene glycol)-block-poly(epsilon-caprolactone)-block-poly(ethylene glycol) (PEO-PCL-PEO) triblock copolymers were prepared and then used for the investigation of the effects of the ratio of epsilon-caprolactone to poly(ethylene glycol) (i.e., [CL]/[EO]) on the physical properties of water-in-oil-in-water (W(1)/O/W(2)) multiple emulsions containing a model reagent, ascorbic acid-2-glucoside (AA2G). In the synthesis, the [CL]/[EO] was varied from 0.11 to 0.31. The molecular weights and compositions of PEO-PCL-PEO were determined by GPC and (1)H NMR analyses. Thermal behavior and crystal formation were studied by DSC, XRD, FT-IR, and polarized optical microscopy (POM). Aggregate behavior of PEO-PCL-PEO was confirmed by DLS, UV, and (1)H NMR. Morphology and relative stiffness of the W(1)/O/W(2) multiple emulsions in the presence of PEO-PCL-PEO were studied by confocal laser scanning microscopy (CLSM) and rheometer. Variation in the [CL]/[EO] significantly affects the crystalline temperature and spherulite morphology of PEO-PCL-PEO. As the [CL]/[EO] increases, the CMCs of PEO-PCL-PEO decreases and the slope of aggregate size reduction against the copolymer concentration becomes steeper except for the lowest [CL]/[EO] value of PEO-PCL-PEO (i.e., P-222). P-222 significantly increases the viscosity of continuous (W(2)) phase, which implies the copolymer would exist in the W(2) phase. On the other hand, the triblock copolymers with relatively high [CL]/[EO] ratios mainly contribute to the size reduction of multiple emulsions and the formation of a firm wall structure. The particle size of the multiple emulsion decreases and the elastic modulus increased as [CL]/[EO] increases, confirmed by microscopic and rheometric analyses.


Assuntos
Emulsões/química , Poliésteres/química , Polietilenoglicóis/química , Varredura Diferencial de Calorimetria , Microscopia , Óleos/química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA