Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 747, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919303

RESUMO

Species occurrence data are foundational for research, conservation, and science communication, but the limited availability and accessibility of reliable data represents a major obstacle, particularly for insects, which face mounting pressures. We present BeeBDC, a new R package, and a global bee occurrence dataset to address this issue. We combined >18.3 million bee occurrence records from multiple public repositories (GBIF, SCAN, iDigBio, USGS, ALA) and smaller datasets, then standardised, flagged, deduplicated, and cleaned the data using the reproducible BeeBDC R-workflow. Specifically, we harmonised species names (following established global taxonomy), country names, and collection dates and, we added record-level flags for a series of potential quality issues. These data are provided in two formats, "cleaned" and "flagged-but-uncleaned". The BeeBDC package with online documentation provides end users the ability to modify filtering parameters to address their research questions. By publishing reproducible R workflows and globally cleaned datasets, we can increase the accessibility and reliability of downstream analyses. This workflow can be implemented for other taxa to support research and conservation.


Assuntos
Abelhas , Animais , Editoração , Fluxo de Trabalho
2.
Insects ; 12(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34940148

RESUMO

The structural patterns comprising bimodal pollination networks can help characterize plant-pollinator systems and the interactions that influence species distribution and diversity over time and space. We compare network organization of three plant-pollinator communities along the altitudinal gradient of the San Francisco Peaks in northern Arizona. We found that pollination networks become more nested, as well as exhibit lower overall network specialization, with increasing elevation. Greater weight of generalist pollinators at higher elevations of the San Francisco Peaks may result in plant-pollinator communities less vulnerable to future species loss due to changing climate or shifts in species distribution. We uncover the critical, more generalized pollinator species likely responsible for higher nestedness and stability at the higher elevation environment. The generalist species most important for network stability may be of the greatest interest for conservation efforts; preservation of the most important links in plant-pollinator networks may help secure the more specialized pollinators and maintain species redundancy in the face of ecological change, such as changing climate.

3.
Biodivers Data J ; 8: e49285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292276

RESUMO

BACKGROUND: Here we present a checklist of the bee species found on the C. Hart Merriam elevation gradient along the San Francisco Peaks in northern Arizona. Elevational gradients can serve as natural proxies for climate change, replacing time with space as they span multiple vegetation zones over a short geographic distance. Describing the distribution of bee species along this elevation gradient will help predict how bee communities might respond to changing climate. To address this, we initiated an inventory associated with ecological studies on pollinators that documented bees on the San Francisco Peaks. Sample sites spanned six life zones (vegetation zones) on the San Francisco Peaks from 2009 to 2019. We also include occurrence data from other studies, gathered by querying the Symbiota Collection of Arthropods Network (SCAN) portal covering the San Francisco Peaks region (hereafter referred to as "the Peaks"). NEW INFORMATION: Our checklist reports 359 bee species and morphospecies spanning five families and 46 genera that have been collected in the Peaks region. Prior to our concerted sampling effort there were records for 155 bee species, yet there has not been a complete list of bee species inhabiting the Peaks published to date. Over a 10-year period, we documented an additional 204 bee species inhabiting the Peaks. Our study documents range expansions to northern Arizona for 15 species. The majority of these are range expansions from either southern Arizona, southern Utah, or the Rocky Mountain region of Colorado. Nine species are new records for Arizona, four of which are the southernmost record for that species. An additional 15 species are likely undescribed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA