Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295787

RESUMO

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Assuntos
Gastrite , Neoplasias Gástricas , Infecções Estreptocócicas , Streptococcus anginosus , Animais , Humanos , Camundongos , Atrofia/patologia , Carcinogênese , Transformação Celular Neoplásica , Mucosa Gástrica , Gastrite/patologia , Inflamação/patologia , Proteínas Quinases Ativadas por Mitógeno , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Streptococcus anginosus/fisiologia , Infecções Estreptocócicas/patologia
2.
Gastroenterology ; 166(2): 323-337.e7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858797

RESUMO

BACKGROUND & AIMS: Dietary fibers are mainly fermented by the gut microbiota, but their roles in colorectal cancer (CRC) are largely unclear. Here, we investigated the associations of different fibers with colorectal tumorigenesis in mice. METHODS: Apcmin/+ mice and C57BL/6 mice with azoxymethane (AOM) injection were used as CRC mouse models. Mice were fed with mixed high-fiber diet (20% soluble fiber and 20% insoluble fiber), high-inulin diet, high-guar gum diet, high-cellulose diet, or diets with different inulin dose. Germ-free mice were used for validation. Fecal microbiota and metabolites were profiled by shotgun metagenomic sequencing and liquid chromatography-mass spectrometry, respectively. RESULTS: Mixed high-fiber diet promoted colorectal tumorigenesis with increased tumor number and tumor load in AOM-treated and Apcmin/+ mice. Antibiotics use abolished the pro-tumorigenic effect of mixed high-fiber diet, while transplanting stools from mice fed with mixed high-fiber diet accelerated tumor growth in AOM-treated germ-free mice. We therefore characterized the contribution of soluble and insoluble fiber in CRC separately. Our results revealed that soluble fiber inulin or guar gum, but not insoluble fiber cellulose, promoted colorectal tumorigenesis in AOM-treated and Apcmin/+ mice. Soluble fiber induced gut dysbiosis with Bacteroides uniformis enrichment and Bifidobacterium pseudolongum depletion, accompanied by increased fecal butyrate and serum bile acids and decreased inosine. We also identified a positive correlation between inulin dosage and colorectal tumorigenesis. Moreover, transplanting stools from mice fed with high-inulin diet increased colonic cell proliferation and oncogene expressions in germ-free mice. CONCLUSION: High-dose soluble but not insoluble fiber potentiates colorectal tumorigenesis in a dose-dependent manner by dysregulating gut microbiota and metabolites in mice.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Camundongos , Animais , Inulina/farmacologia , Camundongos Endogâmicos C57BL , Carcinogênese , Fibras na Dieta/metabolismo , Celulose/farmacologia , Azoximetano , Neoplasias Colorretais/patologia
3.
Gut ; 73(9): 1478-1488, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599786

RESUMO

OBJECTIVE: Probiotic Lactococcus lactis is known to confer health benefits to humans. Here, we aimed to investigate the role of L. lactis in colorectal cancer (CRC). DESIGN: L. lactis abundance was evaluated in patients with CRC (n=489) and healthy individuals (n=536). L. lactis was isolated from healthy human stools with verification by whole genome sequencing. The effect of L. lactis on CRC tumourigenesis was assessed in transgenic Apc Min/+ mice and carcinogen-induced CRC mice. Faecal microbiota was profiled by metagenomic sequencing. Candidate proteins were characterised by nano liquid chromatography-mass spectrometry. Biological function of L. lactis conditioned medium (HkyuLL 10-CM) and functional protein was studied in human CRC cells, patient-derived organoids and xenograft mice. RESULTS: Faecal L. lactis was depleted in patients with CRC. A new L. lactis strain was isolated from human stools and nomenclated as HkyuLL 10. HkyuLL 10 supplementation suppressed CRC tumourigenesis in Apc Min/+ mice, and this tumour-suppressing effect was confirmed in mice with carcinogen-induced CRC. Microbiota profiling revealed probiotic enrichment including Lactobacillus johnsonii in HkyuLL 10-treated mice. HkyuLL 10-CM significantly abrogated the growth of human CRC cells and patient-derived organoids. Such protective effect was attributed to HkyuLL 10-secreted proteins, and we identified that α-mannosidase was the functional protein. The antitumourigenic effect of α-mannosidase was demonstrated in human CRC cells and organoids, and its supplementation significantly reduced tumour growth in xenograft mice. CONCLUSION: HkyuLL 10 suppresses CRC tumourigenesis in mice through restoring gut microbiota and secreting functional protein α-mannosidase. HkyuLL 10 administration may serve as a prophylactic measure against CRC.


Assuntos
Carcinogênese , Neoplasias Colorretais , Fezes , Microbioma Gastrointestinal , Lactococcus lactis , Probióticos , alfa-Manosidase , Animais , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos , Probióticos/uso terapêutico , Fezes/microbiologia , alfa-Manosidase/metabolismo , Camundongos Transgênicos , Feminino , Masculino
4.
Gut ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744443

RESUMO

OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.

5.
J Pathol ; 259(2): 205-219, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373776

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide. The tumor microenvironment exerts crucial effects in driving CRC progression. Cancer-associated fibroblasts (CAFs) serve as one of the most important tumor microenvironment components promoting CRC progression. This study aimed to elucidate the novel molecular mechanisms of CAF-secreted insulin-like growth factor (IGF) 2 in colorectal carcinogenesis. Our results indicated that IGF2 was a prominent factor upregulated in CAFs compared with normal fibroblasts. CAF-derived conditioned media (CM) promoted tumor growth, migration, and invasion of HCT 116 and DLD-1 cells. IGF1R expression is significantly increased in CRC, serving as a potent receptor in response to IGF2 stimulation and predicting unfavorable outcomes for CRC patients. Apart from the PI3K-AKT pathway, RNA-seq analysis revealed that the YAP1-target signature serves as a prominent downstream effector to mediate the oncogenic signaling of IGF2-IGF1R. By single-cell RNA sequencing (scRNA-seq) and immunohistochemical validation, IGF2 was found to be predominantly secreted by CAFs, whereas IGF1R was expressed mainly by cancer cells. IGF2 triggers the nuclear accumulation of YAP1 and upregulates YAP1 target signatures; however, these effects were abolished by either IGF1R knockdown or inhibition with picropodophyllin (PPP), an IGF1R inhibitor. Using CRC organoid and in vivo studies, we found that cotargeting IGF1R and YAP1 with PPP and verteporfin (VP), a YAP1 inhibitor, enhanced antitumor effects compared with PPP treatment alone. In conclusion, this study revealed a novel molecular mechanism by which CAFs promote CRC progression. The findings highlight the translational potential of the IGF2-IGF1R-YAP1 axis as a prognostic biomarker and therapeutic target for CRC. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Carcinogênese/patologia , Neoplasias Colorretais/patologia , Proliferação de Células , Microambiente Tumoral , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like II/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/farmacologia
6.
J Pathol ; 260(4): 402-416, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272544

RESUMO

Homeobox genes include HOX and non-HOX genes. HOX proteins play fundamental roles during ontogenesis by interacting with other non-HOX gene-encoded partners and performing transcriptional functions, whereas aberrant activation of HOX family members drives tumorigenesis. In this study, gastric cancer (GC) expression microarray data indicated that HOXB9 is a prominent upregulated HOX member in GC samples significantly associated with clinical outcomes and advanced TNM stages. However, the functional role of HOXB9 in GC remains contradictory in previous reports, and the regulatory mechanisms are elusive. By in silico and experimental analyses, we found that HOXB9 was upregulated by a vital cell cycle-related transcription factor, E2F1. Depleting HOXB9 causes G1-phase cell cycle arrest by downregulating CDK6 and a subset of cell cycle-related genes. Meanwhile, HOXB9 contributes to cell division and maintains the cytoskeleton in GC cells. We verified that HOXB9 interacts with PBX2 to form a heterodimer, which transcriptionally upregulates CDK6. Knocking down CDK6 can phenocopy the tumor-suppressive effects caused by HOXB9 depletion. Blocking HOXB9 can enhance the anti-tumor effect of CDK6 inhibitors. In conclusion, we elucidate the oncogenic role of HOXB9 in GC and reveal CDK6 as its potent downstream effector. The E2F1-HOXB9/PBX2-CDK6 axis represents a novel mechanism driving gastric carcinogenesis and conveys prognostic and therapeutic implications. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Genes Homeobox , Linhagem Celular Tumoral , Carcinogênese/patologia , Fatores de Transcrição/genética , Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo
7.
Int J Cancer ; 152(8): 1510-1525, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36093588

RESUMO

The use of cell cycle inhibitors has necessitated a better understanding of the cell cycle in tumor biology to optimize the therapeutic approach. Cell cycle aberrations are common in cancers, and it is increasingly acknowledged that these aberrations exert oncogenic effects beyond the cell cycle. Multiple facets such as cancer metabolism, immunity and metastasis are also affected, all of which are beyond the effect of cell proliferation alone. This review comprehensively summarized the important recent findings and advances in these interrelated processes. In cancer metabolism, cell cycle regulators can modulate various pathways in aerobic glycolysis, glucose uptake and gluconeogenesis, mainly through transcriptional regulation and kinase activities. Amino acid metabolism is also regulated through cell cycle progression. On cancer metastasis, metabolic plasticity, immune evasion, tumor microenvironment adaptation and metastatic site colonization are intricately related to the cell cycle, with distinct regulatory mechanisms at each step of invasion and dissemination. Throughout the synthesis of current understanding, knowledge gaps and limitations in the literature are also highlighted, as are new therapeutic approaches such as combinational therapy and challenges in tackling emerging targeted therapy resistance. A greater understanding of how the cell cycle modulates diverse aspects of cancer biology can hopefully shed light on identifying new molecular targets by harnessing the vast potential of the cell cycle.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Ciclo do Ácido Cítrico , Metabolismo dos Carboidratos , Divisão Celular , Ciclo Celular , Glicólise , Microambiente Tumoral
8.
Int J Cancer ; 152(4): 558-571, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35983734

RESUMO

Accumulating evidence has underscored the importance of the Hippo-YAP1 signaling in lung tissue homeostasis, whereas its deregulation induces tumorigenesis. YAP1 and its paralog TAZ are the key downstream effectors tightly controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In solid tumors, Hippo-YAP1 crosstalks with other signaling pathways such as Wnt/ß-catenin, receptor tyrosine kinase cascade, Notch and TGF-ß to synergistically drive tumorigenesis. As YAP1/TAZ expression is significantly correlated with unfavorable outcomes for the patients, small molecules have been developed for targeting YAP1/TAZ to get a therapeutic effect. In this review, we summarize the recent findings on the deregulation of Hippo-YAP1 pathway in nonsmall cell lung carcinoma, discuss the molecular mechanisms of its dysregulation in leading to tumorigenesis, explore the therapeutic strategies for targeting YAP1/TAZ, and provide the research directions for deep investigation. We believe that detailed delineation of Hippo-YAP1 regulation in tumorigenesis provides novel insight for accurate therapeutic intervention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma , Neoplasias Pulmonares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP , Medicina de Precisão , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias Pulmonares/genética , Pulmão/metabolismo
9.
J Hepatol ; 79(6): 1352-1365, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37459922

RESUMO

BACKGROUND & AIMS: Recent studies have highlighted the role of the gut microbiota and their metabolites in non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). We aimed to identify specific beneficial bacterial species that could be used prophylactically to prevent NAFLD-HCC. METHODS: The role of Bifidobacterium pseudolongum was assessed in two mouse models of NAFLD-HCC: diethylnitrosamine + a high-fat/high-cholesterol diet or + a choline-deficient/high-fat diet. Germ-free mice were used for the metabolic study of B. pseudolongum. Stool, portal vein and liver tissues were collected from mice for non-targeted and targeted metabolomic profiles. Two human NAFLD-HCC cell lines (HKCI2 and HKCI10) were co-cultured with B. pseudolongum-conditioned media (B.p CM) or candidate metabolites. RESULTS: B. pseudolongum was the top depleted bacterium in mice with NAFLD-HCC. Oral gavage of B. pseudolongum significantly suppressed NAFLD-HCC formation in two mouse models (p < 0.01). Incubation of NAFLD-HCC cells with B.p CM significantly suppressed cell proliferation, inhibited the G1/S phase transition and induced apoptosis. Acetate was identified as the critical metabolite generated from B. pseudolongum in B.p CM, an observation that was confirmed in germ-free mice. Acetate inhibited cell proliferation and induced cell apoptosis in NAFLD-HCC cell lines and suppressed NAFLD-HCC tumor formation in vivo. B. pseudolongum restored heathy gut microbiome composition and improved gut barrier function. Mechanistically, B. pseudolongum-generated acetate reached the liver via the portal vein and bound to GPR43 (G coupled-protein receptor 43) on hepatocytes. GPR43 activation suppressed the IL-6/JAK1/STAT3 signaling pathway, thereby preventing NAFLD-HCC progression. CONCLUSIONS: B. pseudolongum protected against NAFLD-HCC by secreting the anti-tumor metabolite acetate, which reached the liver via the portal vein. B. pseudolongum holds potential as a probiotic for the prevention of NAFLD-HCC. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an increasing healthcare burden worldwide. There is an urgent need to develop effective agents to prevent NAFLD-HCC progression. Herein, we show that the probiotic Bifidobacterium pseudolongum significantly suppressed NAFLD-HCC progression by secreting acetate, which bound to hepatic GPR43 (G coupled-protein receptor 43) via the gut-liver axis and suppressed the oncogenic IL-6/JAK1/STAT3 signaling pathway. Bifidobacterium pseudolongum holds potential as a novel probiotic for NAFLD-HCC prevention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Interleucina-6/metabolismo , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetatos , Microbiota
10.
Int J Cancer ; 151(8): 1195-1215, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35603909

RESUMO

Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/metabolismo , Fibroblastos/patologia , Humanos , Neoplasias Pulmonares/patologia , Microambiente Tumoral
11.
Lab Invest ; 98(7): 968-976, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748615

RESUMO

Cancer cells are defined genetically by the mutations they harbor, commonly single nucleotide substitutions. Therapeutic approaches which specifically target cancer cells by recognizing these defining genetic aberrations are expected to exhibit minimal side-effects. However, current protein-based targeted therapy is greatly limited by the range of genes that can be targeted, as well as by acquired resistance. We hypothesized that a therapeutic oligonucleotide-based strategy may address this need of specific cancer targeting. We used CRISPR/Cas9 system to target a commonly occurring EGFR point mutation, L858R, with an oligonucleotide guide that recognizes L858R as the suitable protospacer-adjacent motif (PAM) sequence for DNA cleavage. We found that this strategy, which utilized PAM to differentiate cancer mutation from normal, afforded high specificity to the extent of a single nucleotide substitution. The anti-L858R vehicle resulted in selective genome cleavage only in L858R mutant cells, as detected by Sanger sequencing and T7 Endonuclease I assay. Wild-type cells were unaffected by the same treatment. Digital PCR revealed 37.9 ± 8.57% of L858R gene copies were targeted in mutant. Only treated mutant cells, but not wild-type cells, showed reduction in EGFR expression and decreased cell proliferation. Treated mutant cells also formed smaller tumor load in vivo. This targeting approach is expected to be able to target a significant subset of the 15-35% cancer mutations with C > G, A > G, and T > G point mutations. Thus, this strategy may serve as a useful approach to target cancer-defining mutations with specificity, to the extent of differentiating the change of a single nucleotide.


Assuntos
Sistemas CRISPR-Cas/genética , Receptores ErbB/genética , Terapia Genética/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação Puntual/genética , Linhagem Celular Tumoral , Clivagem do DNA , Análise Mutacional de DNA , Humanos
12.
Int J Mol Sci ; 18(6)2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28545226

RESUMO

Colorectal cancer results from genetic aberrations which accumulate over a long period of time, with malignant and metastatic properties acquired at a relatively late stage. A subpopulation of CD26+ colorectal cancer stem cells are known to be implicated in metastasis. We quantified CD26+ cancer cells in 11 primary tumor samples by flow cytometry, and showed that tumors having confirmed or suspected metastases harbored a relatively high CD26+ level in these samples. We hypothesized that this subpopulation of cancer stem cells arises in the late stage of carcinogenesis from the bulk of tumor daughter cells which are CD26-. The manipulation of PIK3CA and TP53, two genes commonly deregulated in the late stage, had an effect on the maintenance of the CD26+ cell population. When CD26- tumor daughter cells were sorted and cultured, the emergence of tumor spheres containing CD26+ cells occurred. These findings shed light to the origin of colorectal cancer stem cells with metastatic properties, which has an implication on conventional treatments by surgery or adjuvant chemotherapy for tumor debulking.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dipeptidil Peptidase 4/metabolismo , Células-Tronco Neoplásicas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinogênese/patologia , Feminino , Humanos , Masculino
14.
Hepatobiliary Pancreat Dis Int ; 15(5): 493-498, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27733318

RESUMO

BACKGROUND: Chemoembolization with doxorubucin-eluting beads (DEB) has been used to treat hepatocellular carcinoma (HCC) since 2007. This study compared the efficacy and survival between transarterial chemoembolization (TACE) with DEB and conventional approach (cTACE) in HCC treatment. METHODS: This retrospective case-control study compared the overall survival and tumor response of HCC patients to cTACE (n=190) and DEB (n=143) by the reassessment of computed tomography and serum alpha-fetoprotein (AFP). Multivariate analysis was used to determine the factors affecting tumor response. RESULTS: The median post-treatment to pre-treatment AFP level was 0.8 for a DEB session (n=258) and 1.0 for a cTACE session (n=452), showing a significantly greater decrease in AFP after DEB (P<0.05). More patients in the DEB group achieved objective response (complete and partial) compared with those in the cTACE group (P<0.05). Objective tumor response after DEB vs cTACE was 34.8% vs 15.4% in 0-3 months (P=0.001), 37.1% vs 20.0% in 3-6 months (P<0.05), and 50.0% vs 30.0% in 6-12 months (P=0.093). DEB predicted a 3.604 times odds of achieving at least one objective tumor response in a patient when compared to cTACE (P<0.0001). The median survival from first transcatheter therapy of patients having undergone at least once DEB was 12.53 months, while those having received cTACE only was 10.53 months (P=0.086). A tendency of improved survival appeared to maintain until >80 months after the first TACE session in the DEB group. CONCLUSION: DEB is a safe alternative to cTACE in HCC patients with better therapeutic efficacy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica , Doxorrubicina/administração & dosagem , Neoplasias Hepáticas/terapia , Idoso , Antibióticos Antineoplásicos/efeitos adversos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/efeitos adversos , Distribuição de Qui-Quadrado , Doxorrubicina/efeitos adversos , Feminino , Hong Kong , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Estudos Retrospectivos , Fatores de Tempo , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Carga Tumoral , alfa-Fetoproteínas/metabolismo
15.
Mol Cancer ; 14: 80, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25884645

RESUMO

BACKGROUND: In colorectal carcinoma (CRC), activation of the Raf/MEK/ERK signaling pathway is commonly observed. In addition, the commonly used 5FU-based chemotherapy in patients with metastatic CRC was found to enrich a subpopulation of CD26(+) cancer stem cells (CSCs). As activation of the Raf/MEK/ERK signaling pathway was also found in the CD26(+) CSCs and therefore, we hypothesized that an ATP-competitive pan-Raf inhibitor, Raf265, is effective in eliminating the cancer cells and the CD26(+) CSCs in CRC patients. METHODS: HT29 and HCT116 cells were treated with various concentrations of Raf265 to study the anti-proliferative and apoptotic effects of Raf265. Anti-tumor effect was also demonstrated using a xenograft model. Cells were also treated with Raf265 in combination with 5FU to demonstrate the anti-migratory and invasive effects by targeting on the CD26(+) CSCs and the anti-metastatic effect of the combined treatment was shown in an orthotopic CRC model. RESULTS: Raf265 was found to be highly effective in inhibiting cell proliferation and tumor growth through the inhibition of the RAF/MEK/ERK signaling pathway. In addition, anti-migratory and invasive effect was found with Raf265 treatment in combination with 5FU by targeting on the CD26(+) cells. Finally, the anti-tumor and anti-metastatic effect of Raf265 in combination with 5FU was also demonstrated. CONCLUSIONS: This preclinical study demonstrates the anti-tumor and anti-metastatic activity of Raf265 in CRC, providing the basis for exploiting its potential use and combination therapy with 5FU in the clinical treatment of CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Imidazóis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular , Neoplasias Colorretais/patologia , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fluoruracila/farmacologia , Células HCT116 , Células HT29 , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Nat Microbiol ; 9(6): 1467-1482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750176

RESUMO

Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2ß1-NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2ß1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , Receptor de Morte Celular Programada 1 , Animais , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Integrina alfa2beta1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos , Modelos Animais de Doenças , Feminino , NF-kappa B/metabolismo
17.
Pathology ; 56(4): 504-515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413251

RESUMO

SMARCA4 mutation has emerged as a marker of poor prognosis in lung cancer and has potential predictive value in cancer treatment, but recommendations for which patients require its investigation are lacking. We comprehensively studied SMARCA4 alterations and the clinicopathological significance in a large cohort of immunohistochemically-subtyped non-small cell lung cancer (NSCLC). A total of 1416 patients was studied for the presence of SMARCA4 deficiency by immunohistochemistry (IHC). Thereafter, comprehensive sequencing of tumours was performed for 397 of these patients to study the mutational spectrum of SWI/SNF and SMARCA4 aberrations. IHC evidence of SMARCA4 deficiency was found in 2.9% of NSCLC. Of the sequenced tumours, 38.3% showed aberration in SWI/SNF complex, and 9.3% had SMARCA4 mutations. Strikingly, SMARCA4 aberrations were much more prevalent in large cell carcinoma (LCC) than other histological tumour subtypes. SMARCA4-deficient and SMARCA4-mutated tumours accounted for 40.5% and 51.4% of all LCC, respectively. Multivariable analyses confirmed SMARCA4 mutation was an independent prognostic factor in lung cancer. The immunophenotype of a subset of these tumours frequently showed TTF1 negativity and HepPAR1 positivity. SMARCA4 mutation or its deficiency was associated with positive smoking history and poor prognosis. It also demonstrated mutual exclusion with EGFR mutation. Taken together, the high incidence of SMARCA4 aberrations in LCC may indicate its diagnostic and prognostic value. Our study established the necessity of SMARCA4 IHC in the identification of SMARCA4-aberrant tumours, and this may be of particular importance in LCC and tumours without known driver events.


Assuntos
Carcinoma de Células Grandes , Carcinoma Pulmonar de Células não Pequenas , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Helicases/genética , DNA Helicases/deficiência , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/deficiência , Prognóstico , Fatores de Transcrição/genética , Fatores de Transcrição/deficiência
18.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900944

RESUMO

The N6-methyladenosine (m6A) RNA binding protein YTHDF1 is frequently overexpressed in colorectal cancer (CRC) and drives chemotherapeutic resistance. To systematically identify druggable targets in CRC with high expression of YTHDF1, we employed a CRISPR/Cas9 screening strategy that revealed RUVBL1 and RUVBL2 as putative targets.RUVBL1/2 were overexpressed in primary CRC samples and represented independent predictors of poor patient prognosis. Functionally, loss of RUVBL1/2 preferentially impaired the growth ofYTHDF1-high CRC cells, patient-derived primary CRC organoids, and subcutaneous xenografts. Mechanistically, YTHFD1 and RUVBL1/2 formed a positive feed-forward circuit to accelerate oncogenic translation. YTHDF1 bound to m6A-modified RUVBL1/2 mRNA to promote translation initiation and protein expression. Co-IP and mass spectrometry identified that RUVBL1/2 reciprocally interacted with YTHDF1 at 40S translation initiation complexes. Consequently, RUVBL1/2 depletion stalled YTHDF1-driven oncogenic translation and nascent protein biosynthesis, leading to proliferative arrest and apoptosis. Ribo-seq revealed that RUVBL1/2 loss impaired the activation of MAPK, RAS and PI3K-AKT signaling induced by YTHDF1. Finally, blockade of RUVBL1/2 by the pharmacological inhibitor CB6644 or vesicle-like nanoparticle-encapsulated siRNAs preferentially arrested the growth of YTHDF1-expressing CRC in vitro and in vivo. Together, this study uncovered that RUVBL1/2 are potential prognostic markers and druggable targets that regulate protein translation in YTHDF1-high CRC.

19.
Cell Host Microbe ; 32(8): 1365-1379.e10, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39059397

RESUMO

Peptostreptococcus stomatis (P. stomatis) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that P. stomatis accelerates colonic tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. P. stomatis adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/ß4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/ß4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of P. stomatis. P. stomatis-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. P. stomatis also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAFV600E-mutant CRC xenografts. Thus, we identify P. stomatis as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.


Assuntos
Carcinogênese , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Peptostreptococcus , Receptor ErbB-2 , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , /farmacologia
20.
Nat Cancer ; 5(2): 347-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200244

RESUMO

The introduction of the International Association for the Study of Lung Cancer grading system has furthered interest in histopathological grading for risk stratification in lung adenocarcinoma. Complex morphology and high intratumoral heterogeneity present challenges to pathologists, prompting the development of artificial intelligence (AI) methods. Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention networK), encoding multiresolution inputs with an attention mechanism, to delineate growth patterns from hematoxylin and eosin-stained slides. In 1,372 lung adenocarcinomas across four independent cohorts, AI-based grading was prognostic of disease-free survival, and further assisted pathologists by consistently improving prognostication in stage I tumors. Tumors with discrepant patterns between AI and pathologists had notably higher intratumoral heterogeneity. Furthermore, ANORAK facilitates the morphological and spatial assessment of the acinar pattern, capturing acinus variations with pattern transition. Collectively, our AI method enabled the precision quantification and morphology investigation of growth patterns, reflecting intratumoral histological transitions in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Estadiamento de Neoplasias , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA