Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Environ Microbiol ; 25(11): 2564-2579, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37622480

RESUMO

The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.


Assuntos
Pectobacterium , Pseudomonas fluorescens , Solanum tuberosum , Sistemas de Secreção Tipo VI , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Mutagênese , Pectobacterium/genética , Pectobacterium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Bioorg Med Chem Lett ; 96: 129517, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838341

RESUMO

The search for new classes of antibiotics is a real concern of public health due to the emergence of multi-resistant bacteria strains. We report herein the synthesis and characterization of a new series of 13 molecules combining isoxazoline/isoxazole sulfonamides and hydrazides motives. These molecules were obtained according to a costless eco-friendly procedure, and a one-pot three-step cascade synthesis under ultrasonic cavitation. All the synthesized compounds were fully characterized by HRMS, 1H NMR, 13C NMR spectroscopy and HPLC analysis. These new molecules have been evaluated against the major human opportunistic pathogen Pseudomonas aeruginosa to determine their potential to affect its growth and biofilm formation or dispersion. Two derivatives (5a and 6a) demonstrated their ability to destabilize a mature biofilm by about 50 % within 24 h. This may pave the way to the development of a new class of compounds affecting biofilm, which are easy to synthesize according to green chemistry processes.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Sulfanilamida , Sulfonamidas/farmacologia
3.
Biometals ; 36(2): 255-261, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171432

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively. Pyoverdine is the high affinity siderophore and its synthesis and uptake involve more than 30 genes organized in different operons. Its synthesis and uptake are triggered by iron scarcity via the Fur regulator and involves two extra cytoplasmic sigma factors (ECF), PvdS for the biosynthesis of PVD and FpvI for the uptake via the TonB-dependent FpvA outer membrane transporter and other periplasmic and inner membrane proteins. It appeared recently that the regulation of PVD biosynthesis and uptake involves other regulators, including other ECF factors, and LysR regulators. This is the case especially for the genes coding for periplasmic and inner membrane proteins involved in the reduction of Fe3+ to Fe2+ and the transport of ferrous iron to the cytoplasm that appears to represent a crucial step in the uptake process.


Assuntos
Proteínas da Membrana Bacteriana Externa , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/genética , Ferro/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239913

RESUMO

A series of 6-polyaminosteroid analogues of squalamine were synthesized with moderate to good yields and evaluated for their in vitro antimicrobial properties against both susceptible and resistant Gram-positive (vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus) and Gram-negative (carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa) bacterial strains. Minimum inhibitory concentrations against Gram-positive bacteria ranged from 4 to 16 µg/mL for the most effective compounds, 4k and 4n, and showed an additive or synergistic effect with vancomycin or oxacillin. On the other hand, the derivative 4f, which carries a spermine moiety like that of the natural trodusquemine molecule, was found to be the most active derivative against all the resistant Gram-negative bacteria tested, with an MIC value of 16 µg/mL. Our results suggest that 6-polyaminosteroid analogues of squalamine are interesting candidates for Gram-positive bacterial infection treatments, as well as potent adjuvants to fight Gram-negative bacterial resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Vancomicina/farmacologia , Antibacterianos/farmacologia , Colestanóis , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
5.
J Proteome Res ; 21(6): 1392-1407, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482949

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen highly resistant to a wide range of antimicrobial agents, making its infections very difficult to treat. Since microorganisms need to perpetually adapt to their surrounding environment, understanding the effect of carbon sources on P. aeruginosa physiology is therefore essential to avoid increasing drug-resistance and better fight this pathogen. By a global proteomic approach and phenotypic assays, we investigated the impact of various carbon source supplementations (glucose, glutamate, succinate, and citrate) on the physiology of the P. aeruginosa PA14 strain. A total of 581 proteins were identified as differentially expressed in the 4 conditions. Most of them were more abundant in citrate supplementation and were involved in virulence, motility, biofilm development, and antibiotic resistance. Phenotypic assays were performed to check these hypotheses. By coupling all this data, we highlight the importance of the environment in which the bacterium evolves on its metabolism, and thus the necessity to better understand the metabolic pathways implied in its adaptative response according to the nutrient availability.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Biofilmes , Carbono/metabolismo , Citratos/metabolismo , Citratos/farmacologia , Suplementos Nutricionais , Humanos , Proteômica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
6.
Adv Exp Med Biol ; 1386: 147-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258072

RESUMO

Bacteria sense their environment via the cell envelope, which in Gram-negative bacteria comprises the outer membrane, the periplasmic space, and the inner membrane. Pseudomonas aeruginosa is an opportunistic pathogen which is exposed to different cell wall stresses imposed by exposure to antibiotics, osmotic pressure, and long-time colonization of host tissues such as the lung in cystic fibrosis patients. In response to these stresses, P. aeruginosa is able to respond by establishing a cell envelope stress response involving different regulatory pathways including the extra-cytoplasmic sigma factors AlgU, SigX, and SbrI and other two-component sensor/response regulators and effectors. This chapter aims to review the different factors leading to the activation of the cell envelope stress response in P. aeruginosa and the genetic determinants involved in this response, which is crucial for the survival of the bacterium upon exposure to different stressful conditions.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Humanos , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico
7.
Mar Drugs ; 20(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005527

RESUMO

For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.


Assuntos
Archaea , Carotenoides , Archaea/metabolismo , Biotecnologia , Carotenoides/metabolismo , Pigmentação
8.
Exp Dermatol ; 29(9): 790-800, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682345

RESUMO

Microbial endocrinology is studying the response of microorganisms to hormones and neurohormones and the microbiota production of hormones-like molecules. Until now, it was mainly applied to the gut and revealed that the intestinal microbiota should be considered as a real organ in constant and bilateral interactions with the whole human body. The skin harbours the second most abundant microbiome and contains an abundance of nerve terminals and capillaries, which in addition to keratinocytes, fibroblasts, melanocytes, dendritic cells and endothelial cells, release a huge diversity of hormones and neurohormones. In the present review, we will examine recent experimental data showing that, in skin, molecules such as substance P, calcitonin gene-related peptide, natriuretic peptides and catecholamines can directly affect the physiology and virulence of common skin-associated bacteria. Conversely, bacteria are able to synthesize and release compounds including histamine, glutamate and γ-aminobutyric acid or peptides showing partial homology with neurohormones such as α-melanocyte-stimulating hormone (αMSH). The more surprising is that some viruses can also encode neurohormones mimicking proteins. Taken together, these elements demonstrate that there is also a cutaneous microbial endocrinology and this emerging concept will certainly have important consequences in dermatology.


Assuntos
Bactérias/metabolismo , Neurotransmissores/biossíntese , Pele/microbiologia , Humanos , Microbiota , Pele/metabolismo
10.
Biofilm ; 7: 100191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544741

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance: CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.

11.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411953

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Assuntos
Infecções por Pseudomonas , Tobramicina , Humanos , Tobramicina/farmacologia , Pseudomonas aeruginosa , Fluidez de Membrana , Fator sigma/genética , Fator sigma/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Biofilmes , Homeostase
12.
Microbiology (Reading) ; 159(Pt 2): 339-351, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23154974

RESUMO

Gamma-aminobutyric acid (GABA) is widespread in the environment and can be used by animal and plants as a communication molecule. Pseudomonas species, in particular fluorescent ones, synthesize GABA and express GABA-binding proteins. In this study, we investigated the effects of GABA on the virulence of Pseudomonas aeruginosa. While exposure to GABA (10 µM) did not modify either the growth kinetics or the motility of the bacterium, its cytotoxicity and virulence were strongly increased. The Caenorhabditis elegans 'fast killing test' model revealed that GABA acts essentially through an increase in diffusible toxin(s). GABA also modulates the biofilm formation activity and adhesion properties of PAO1. GABA has no effect on cell surface polarity, biosurfactant secretion or on the lipopolysaccharide structure. The production of several exo-enzymes, pyoverdin and exotoxin A is not modified by GABA but we observed an increase in cyanogenesis which, by itself, could explain the effect of GABA on P. aeruginosa virulence. This mechanism appears to be regulated by quorum sensing. A proteomic analysis revealed that the effect of GABA on cyanogenesis is correlated with a reduction of oxygen accessibility and an over-expression of oxygen-scavenging proteins. GABA also promotes specific changes in the expression of thermostable and unstable elongation factors Tuf/Ts involved in the interaction of the bacterium with the host proteins. Taken together, these results suggest that GABA is a physiological regulator of P. aeruginosa virulence.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Fatores de Virulência/biossíntese , Ácido gama-Aminobutírico/metabolismo , Animais , Toxinas Bacterianas/biossíntese , Caenorhabditis elegans/microbiologia , Locomoção/efeitos dos fármacos , Proteoma/análise , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Análise de Sobrevida
13.
BMC Microbiol ; 13: 123, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23718251

RESUMO

BACKGROUND: The genus Pseudomonas includes a heterogeneous set of microorganisms that can be isolated from many different niches and nearly 100 different strains have been described. The best characterized bacterium is Pseudomonas aeruginosa which is the primary agent of opportunistic infection in humans, causing both acute and chronic infections. Other species like fluorescens, putida or mosselii have been sporadically isolated from hospitalized patients but their association with the pathology often remains unclear. RESULTS: This study focuses on the cytotoxicity and inflammatory potential of two strains of Pseudomonas mosselii (ATCC BAA-99 and MFY161) that were recently isolated from clinical samples of hospitalized patients. The behavior of these bacteria was compared to that of the well-known opportunistic pathogen P. aeruginosa PAO1. We found that P. mosselii ATCC BAA-99 and MFY161 are cytotoxic towards Caco-2/TC7 cells, have low invasive capacity, induce secretion of human ß-defensin 2 (HBD-2), alter the epithelial permeability of differentiated cells and damage the F-actin cytoskeleton. CONCLUSIONS: These data bring new insights into P. mosselii virulence, since this bacterium has often been neglected due to its rare occurrence in hospital.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas/patogenicidade , Actinas/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Endocitose , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Hospitais , Humanos , Pseudomonas/isolamento & purificação , Virulência , beta-Defensinas/metabolismo
14.
Stem Cells ; 30(4): 762-72, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267310

RESUMO

Bone resorption by osteoclasts and bone formation by osteoblasts are tightly coupled processes implicating factors in TNF, bone morphogenetic protein, and Wnt families. In osteoimmunology, macrophages were described as another critical cell population regulating bone formation by osteoblasts but the coupling factors were not identified. Using a high-throughput approach, we identified here Oncostatin M (OSM), a cytokine of the IL-6 family, as a major coupling factor produced by activated circulating CD14+ or bone marrow CD11b+ monocytes/macrophages that induce osteoblast differentiation and matrix mineralization from human mesenchymal stem cells while inhibiting adipogenesis. Upon activation of toll-like receptors (TLRs) by lipopolysaccharide or endogenous ligands, OSM was produced in classically activated inflammatory M1 and not M2 macrophages, through a cyclooxygenase-2 and prostaglandin-E2 regulatory loop. Stimulation of osteogenesis by activated monocytes/macrophages was prevented using neutralizing antibodies or siRNA to OSM, OSM receptor subunits gp130 and OSMR, or to the downstream transcription factor STAT3. The induced osteoblast differentiation program culminated with enhanced expression of CCAAT-enhancer-binding protein δ, Cbfa1, and alkaline phosphatase. Overexpression of OSM in the tibia of mice has led to new bone apposition with no sign of bone resorption. Two other cytokines have also a potent role in bone formation induced by monocytes/macrophages and activation of TLRs: IL-6 and leukemia inhibitory factor. We propose that during bone inflammation, infection, or injury, the IL-6 family signaling network activated by macrophages and TLR ligands stimulates bone formation that is largely uncoupled from bone resorption and is thus an important target for anabolic bone therapies.


Assuntos
Ativação de Macrófagos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Monócitos/citologia , Oncostatina M/metabolismo , Osteogênese , Transdução de Sinais , Adenoviridae/efeitos dos fármacos , Adenoviridae/genética , Adulto , Idoso , Animais , Matriz Óssea/efeitos dos fármacos , Matriz Óssea/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 107(45): 19420-5, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974977

RESUMO

IL-27, consisting of the subunits IL-27p28 and Epstein-Barr virus-induced gene 3 (EBI3), is a heterodimeric cytokine belonging to the IL-6/IL-12 family of cytokines. IL-27p28 is a four-helical cytokine requiring association with the soluble receptor EBI3 to be efficiently secreted and functionally active. Computational and biological analyses of the IL-27 binding site 1 to its receptor revealed important structural proximities with the ciliary neurotrophic factor group of cytokines and highlighted the contribution of p28 Trp(97), as well as of EBI3 Phe(97), Asp(210), and Glu(159), as key residues in the interactions between both cytokine subunits. WSX-1 (IL-27R) and gp130 compose the IL-27 receptor-signaling complex, recruiting the STAT-1 and STAT-3 pathways. A study of IL-27 binding site 3 showed that Trp(197) was crucial for the cytokine's interaction with gp130, but that the mutated cytokine still recognized IL-27R on the cell surface. IL-27 exerts both pro- and anti-inflammatory functions, promoting proliferation and differentiation of Th1 and inhibiting Th17 differentiation. Our results led us to develop mutated forms of human and mouse IL-27 with antagonistic activities. Using an in vivo mouse model of concanavalin A-induced Th1-cell-mediated hepatitis, we showed that the murine IL-27 antagonist W195A decreased liver inflammation by downregulating the synthesis of CXCR3 ligands and several acute phase proteins. Together, these data suggest that IL-27 antagonism could be of interest in down-modulating acute IL-27-driven Th1-cell-mediated immune response.


Assuntos
Fator Neurotrófico Ciliar/química , Interleucinas/antagonistas & inibidores , Interleucinas/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Hepatite/patologia , Humanos , Inflamação/tratamento farmacológico , Interleucinas/química , Ligantes , Hepatopatias/patologia , Camundongos , Mutação , Receptores CXCR3/metabolismo , Células Th1/imunologia , Células Th17
16.
Int J Mol Sci ; 14(6): 12186-204, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23743829

RESUMO

Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10-5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.


Assuntos
Pseudomonas fluorescens/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Bicuculina/farmacologia , Biofilmes/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Difusão , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Lipopolissacarídeos/química , Muscimol/farmacologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Oligopeptídeos/biossíntese , Ratos , Receptores de GABA-A/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
17.
Microbiol Spectr ; 11(1): e0243022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625660

RESUMO

The rise of antibiotic resistance and dearth of novel antibiotics have posed a serious health crisis worldwide. In this study, we screened a combination of antibiotics and nonantibiotics providing a viable strategy to solve this issue by broadening the antimicrobial spectrum. We found that chenodeoxycholic acid (CDCA), a cholic acid derivative of the traditional Chinese medicine (TCM) Tanreqing (TRQ), synergizes with amikacin against Staphylococcus aureus in vitro, and this synergistic killing was effective against diverse methicillin-resistant S. aureus (MRSA) variants, including small-colony variants (SCVs), biofilm strains, and persisters. The CDCA-amikacin combination protects a mouse model from S. aureus infections. Mechanistically, CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates reactive oxygen species (ROS) generation by inhibiting superoxide dismutase activity. This work highlights the potential use of TCM components in treating S. aureus-associated infections and extend the use of aminoglycosides in eradicating Gram-positive pathogens. IMPORTANCE Multidrug resistance (MDR) is spreading globally with increasing speed. The search for new antibiotics is one of the key strategies in the fight against MDR. Antibiotic resistance breakers that may or may not have direct antibacterial action and can either be coadministered or conjugated with other antibiotics are being studied. To better expand the antibacterial spectrum of certain antibiotics, we identified one component from a traditional Chinese medicine, Tanreqing (TRQ), that increased the activity of aminoglycosides. We found that this so-called agent, chenodeoxycholic acid (CDCA), sensitizes Staphylococcus aureus to aminoglycoside killing and protects a mouse model from S. aureus infections. CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates ROS generation by inhibiting superoxide dismutase activity in S. aureus. Our work highlights the potential use of TCM or its effective components, such as CDCA, in treating antibiotic resistance-associated infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Amicacina/farmacologia , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico , Testes de Sensibilidade Microbiana
18.
Biofilm ; 5: 100131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37252226

RESUMO

Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.

19.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275318

RESUMO

The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.

20.
Sci Rep ; 13(1): 22145, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092873

RESUMO

Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.


Assuntos
Legionella pneumophila , Legionella , Ácidos Ftálicos , Humanos , Legionella pneumophila/fisiologia , Ácidos Ftálicos/farmacologia , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA