Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Trends Biochem Sci ; 49(1): 52-67, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37945409

RESUMO

Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.


Assuntos
Proteínas , Ubiquitina , Ubiquitina/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Comunicação Celular
2.
EMBO Rep ; 25(4): 1792-1813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383861

RESUMO

Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.


Assuntos
Ribonucleases , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Ribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Resposta a Proteínas não Dobradas , Morte Celular
3.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351844

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP47/fisiologia , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
4.
Traffic ; 24(11): 546-548, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581229

RESUMO

TransitID is a new methodology based on proximity labeling allowing for the study of protein trafficking a the proteome scale.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Transporte Proteico
5.
J Biol Chem ; 300(4): 107169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494075

RESUMO

The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.


Assuntos
Endorribonucleases , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Evolução Molecular
6.
Hepatology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626349

RESUMO

HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.

7.
Am J Hum Genet ; 108(11): 2171-2185, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34699745

RESUMO

Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.


Assuntos
Idade de Início , Células-Tronco Pluripotentes Induzidas/citologia , Neuritos , Neurônios/citologia , Síndrome de Wolfram/patologia , Sistemas CRISPR-Cas , Estudos de Casos e Controles , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Humanos , Neuritos/efeitos dos fármacos , Ácido Valproico/farmacologia , Síndrome de Wolfram/genética
8.
Mol Cell Proteomics ; 21(2): 100188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929376

RESUMO

Anterior gradient 2 (AGR2) is an endoplasmic reticulum (ER)-resident protein disulfide isomerase (PDI) known to be overexpressed in many human epithelial cancers and is involved in cell migration, cellular transformation, angiogenesis, and metastasis. This protein inhibits the activity of the tumor suppressor p53, and its expression levels can be used to predict cancer patient outcome. However, the precise network of AGR2-interacting partners and clients remains to be fully characterized. Herein, we used label-free quantification and also stable isotope labeling with amino acids in cell culture-based LC-MS/MS analyses to identify proteins interacting with AGR2. Functional annotation confirmed that AGR2 and its interaction partners are associated with processes in the ER that maintain intracellular metabolic homeostasis and participate in the unfolded protein response, including those associated with changes in cellular metabolism, energy, and redox states in response to ER stress. As a proof of concept, the interaction between AGR2 and PDIA3, another ER-resident PDI, was studied in more detail. Pathway analysis revealed that AGR2 and PDIA3 play roles in protein folding in ER, including post-translational modification and in cellular response to stress. We confirmed the AGR2-PDIA3 complex formation in cancer cells, which was enhanced in response to ER stress. Accordingly, molecular docking characterized potential quaternary structure of this complex; however, it remains to be elucidated whether AGR2 rather contributes to PDIA3 maturation in ER, the complex directly acts in cellular signaling, or mediates AGR2 secretion. Our study provides a comprehensive insight into the protein-protein interaction network of AGR2 by identifying functionally relevant proteins and related cellular and biochemical pathways associated with the role of AGR2 in cancer cells.


Assuntos
Mucoproteínas , Neoplasias , Proteínas Oncogênicas , Isomerases de Dissulfetos de Proteínas , Cromatografia Líquida , Humanos , Simulação de Acoplamento Molecular , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem
9.
Traffic ; 22(10): 362-363, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338403

RESUMO

In this article we discuss implications of the recent discovery of glycoRNAs found to be present at the cell surface of mammalian cells which was reported by Flynn et al. Cell 2021.


Assuntos
Polissacarídeos , RNA , Animais , Membrana Celular/metabolismo , Mamíferos/metabolismo , Polissacarídeos/metabolismo
10.
J Cell Mol Med ; 28(5): e17840, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37409695

RESUMO

The Calreticulin Workshop, initiated in 1994 by Marek Michalak in Banff (Alberta, Canada), was first organized to be an informal scientific meeting attended by researchers working on diverse biological questions related to functions associated with the endoplasmic reticulum (ER)-resident lectin-like chaperone and applied to a wide range of biological systems and models. Since then, this workshop has broadened the range of topics to cover all ER-related functions, has become international and has been held in Canada, Chile, Denmark, Italy, Switzerland, UK, USA, Greece and this year in France. Each conference, which is organized every other year (pending world-wide pandemic), generally attracts between 50 and 100 participants, including both early career researchers and international scientific leaders to favour discussions and exchanges. Over the years, the International Calreticulin Workshop has become an important gathering of the calreticulin and ER communities as a whole. The 14th International Calreticulin Workshop occurred from May 9-12 in St-Malo, Brittany, France, and has been highlighted by its rich scientific content and open-minded discussions held in a benevolent atmosphere. The 15th International Calreticulin Workshop will be organized in 2025 in Brussels, Belgium.

11.
EMBO Rep ; 22(5): e51412, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710763

RESUMO

In the past decades, many studies reported the presence of endoplasmic reticulum (ER)-resident proteins in the cytosol. However, the mechanisms by which these proteins relocate and whether they exert cytosolic functions remain unknown. We find that a subset of ER luminal proteins accumulates in the cytosol of glioblastoma cells isolated from mouse and human tumors. In cultured cells, ER protein reflux to the cytosol occurs upon ER proteostasis perturbation. Using the ER luminal protein anterior gradient 2 (AGR2) as a proof of concept, we tested whether the refluxed proteins gain new functions in the cytosol. We find that refluxed, cytosolic AGR2 binds and inhibits the tumor suppressor p53. These data suggest that ER reflux constitutes an ER surveillance mechanism to relieve the ER from its contents upon stress, providing a selective advantage to tumor cells through gain-of-cytosolic functions-a phenomenon we name ER to Cytosol Signaling (ERCYS).


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Camundongos , Proteínas/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(18): 9932-9941, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312819

RESUMO

Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell death. Cell starvation also triggers adaptive responses, like angiogenesis, that promote tissue reorganization and repair, but other adaptive responses and their mediators are still poorly characterized. To explore this issue, we analyzed secretomes from glucose-deprived cells, which revealed up-regulation of multiple cytokines and chemokines, including IL-6 and IL-8, in response to starvation stress. Starvation-induced cytokines were cell type-dependent, and they were also released from primary epithelial cells. Most cytokines were up-regulated in a manner dependent on NF-κB and the transcription factor of the integrated stress response ATF4, which bound directly to the IL-8 promoter. Furthermore, glutamine deprivation, as well as the antimetabolic drugs 2-deoxyglucose and metformin, also promoted the release of IL-6 and IL-8. Finally, some of the factors released from starved cells induced chemotaxis of B cells, macrophages, and neutrophils, suggesting that nutrient deprivation in the tumor environment can serve as an initiator of tumor inflammation.


Assuntos
Inflamação/genética , Interleucina-6/genética , Interleucina-8/genética , Neoplasias/metabolismo , Estresse Fisiológico/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Antimetabólitos/farmacologia , Morte Celular/efeitos dos fármacos , Desoxiglucose/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Glucose/metabolismo , Glutamina/metabolismo , Células HeLa , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Metformina/farmacologia , NF-kappa B/genética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Inanição/genética , Inanição/metabolismo , Estresse Fisiológico/imunologia
13.
EMBO Rep ; 21(12): e51929, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274581

RESUMO

Endoplasmic reticulum (ER) stress signaling has long been associated with various pathological states in particular with the development of diseases with an underlying inflammation, such as diabetes, liver or cardiovascular dysfunctions, and cancer. ER stress signaling is mediated by three stress sensors. The most evolutionarily conserved one, the inositol-requiring enzyme 1 alpha (IRE1), transduces most of the signals through an endoribonuclease (RNase) activity toward RNAs including mRNAs and microRNAs (miRNAs). By exploring phosphoinositide signaling in human macrophages, Hamid and colleagues discovered a novel function of IRE1 RNase that through the cleavage of pre-miR-2317 generates a mature miR-2317 independently of the canonical Dicer endonuclease to yield specific biological outcomes (Hamid et al, 2020).


Assuntos
MicroRNAs , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Humanos , Inositol , Macrófagos , MicroRNAs/genética , Fosfatidilinositóis , Proteínas Serina-Treonina Quinases/genética
14.
J Chem Inf Model ; 62(17): 4247-4260, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960929

RESUMO

A range of in silico methodologies were herein employed to study the unconventional XBP1 mRNA cleavage mechanism performed by the unfolded protein response (UPR) mediator Inositol Requiring Enzyme 1α (IRE1). Using Protein-RNA molecular docking along with a series of extensive restrained/unrestrained atomistic molecular dynamics (MD) simulations, the dynamical behavior of the system was evaluated and a reliable model of the IRE1/XBP1 mRNA complex was constructed. From a series of well-converged quantum mechanics molecular mechanics well-tempered metadynamics (QM/MM WT-MetaD) simulations using the Grimme dispersion interaction corrected semiempirical parametrization method 6 level of theory (PM6-D3) and the AMBER14SB-OL3 force field, the free energy profile of the cleavage mechanism was determined, along with intermediates and transition state structures. The results show two distinct reaction paths based on general acid-general base type mechanisms, with different activation energies that perfectly match observations from experimental mutagenesis data. The study brings unique atomistic insights into the cleavage mechanism of XBP1 mRNA by IRE1 and clarifies the roles of the catalytic residues H910 and Y892. Increased understanding of the details in UPR signaling can assist in the development of new therapeutic agents for its modulation.


Assuntos
Inositol , Ribonucleases , Endorribonucleases/genética , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Ribonucleases/metabolismo
15.
Biochem J ; 478(15): 2953-2975, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34375386

RESUMO

The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Homeostase/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Dobramento de Proteína/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
J Cell Mol Med ; 25(23): 10846-10856, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773369

RESUMO

Raman spectroscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra (RS) and transcriptomic profiles of glioblastoma can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional RS and transcriptomes can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra and vice versa. From these analyses, we extract a minimal gene expression signature associated with specific RS profiles and predictive of disease outcome.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Análise Espectral Raman/métodos , Transcriptoma/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Prog Mol Subcell Biol ; 59: 197-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050868

RESUMO

The endoplasmic reticulum, as the site of synthesis for proteins in the secretory pathway has evolved select machineries to ensure the correct folding and modification of proteins. However, sometimes these quality control mechanisms fail and proteins are misfolded. Other factors, such as nutrient deprivation, hypoxia or an increased demand on protein synthesis can also cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. There are mechanisms that recognise and deal with this accumulation of protein through degradation and/or export. Many diseases are associated with aberrant quality control mechanisms, and among these, cancer has emerged as a group of diseases that rely on endoplasmic reticulum homeostasis to sustain development and growth. The knowledge of how protein quality control operates in cancer has identified opportunities for these pathways to be pharmacologically targeted, which could lead to newer or more effective treatments in the future.


Assuntos
Retículo Endoplasmático , Neoplasias , Proteostase , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Dobramento de Proteína , Proteostase/genética
18.
Mol Cell ; 49(6): 1049-59, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23395000

RESUMO

As solid tumors expand, oxygen and nutrients become limiting owing to inadequate vascularization and diffusion. How malignant cells cope with this potentially lethal metabolic stress remains poorly understood. We found that glucose shortage associated with malignant progression triggers apoptosis through the endoplasmic reticulum (ER) unfolded protein response (UPR). ER stress is in part caused by reduced glucose flux through the hexosamine pathway. Deletion of the proapoptotic UPR effector CHOP in a mouse model of K-ras(G12V)-induced lung cancer increases tumor incidence, strongly supporting the notion that ER stress serves as a barrier to malignancy. Overcoming this barrier requires the selective attenuation of the PERK-CHOP arm of the UPR by the molecular chaperone p58(IPK). Furthermore, p58(IPK)-mediated adaptive response enables cells to benefit from the protective features of chronic UPR. Altogether, these results show that ER stress activation and p58(IPK) expression control the fate of malignant cells facing glucose shortage.


Assuntos
Apoptose , Transformação Celular Neoplásica/metabolismo , Glucose/deficiência , Chaperonas Moleculares/fisiologia , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo , Acetilgalactosamina/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Resposta a Proteínas não Dobradas
20.
FASEB J ; 33(3): 3481-3495, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452881

RESUMO

The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.


Assuntos
Fator de Transcrição E2F1/genética , Endorribonucleases/genética , Antígenos de Histocompatibilidade Classe I/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Ligantes , RNA Mensageiro/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA