Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(2): 39, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227107

RESUMO

To investigate the heavy metals (HMs) contamination of surface farmland soil along the river in the southeast of a mining area in southwest China and identify the contamination sources, 54 topsoil samples were collected and the concentrations of seven elements (Zn, Ni, Pb, Cu, Hg, Cr, and Co) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic fluorescence spectrometry (AFS). The geo-accumulation index ([Formula: see text]) and comprehensive potential ecological risk index ([Formula: see text]) were used for analysis to determine the pollution degree of HMs and the risk level of the study area. Meanwhile, the Positive Matrix Factorization (PMF) model was combined with a variety of statistical methods to determine the sources of HMs. To explore the influence of the river flowing through the mining area on the concentrations of HMs in the farmland soil, 15 water samples were collected and the concentrations of the above seven elements were determined. The results showed that the concentrations of Pb, Cu, and Zn in soil all exceeded the risk screening value, and Pb in soil of some sampling sites exceeded control value of "Agricultural Land Soil Pollution Risk Control Standard".[Formula: see text] showed that Pb was heavily contaminated, while Cu and Zn were moderately contaminated. RI showed that the study area was at moderate risk. PMF and various statistical methods showed that the main source of HMs was the industrial source. In the short term, the river flowing through the mine has no significant influence on the concentration of HMs in the soil. The results provide a reference for the local government to control contamination and identify the sources of HMs.


Assuntos
Metais Pesados , Solo , Fazendas , Rios , Chumbo , Medição de Risco , China
2.
Anal Chim Acta ; 1290: 342197, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246739

RESUMO

BACKGROUND: Pretreatment techniques should be introduced before metal ion determination because there is very low content of heavy metals in Chinese medicinal plants and environmental samples. Magnetic dispersive micro solid phase extraction (MDMSPE) has been widely used for the separation and adsorption of heavy metal pollutants in medicinal plants and environmental samples. However, the majority of MDMSPE adsorbents have certain drawbacks, including low selectivity, poor anti-interference ability, and small adsorption capacity. Therefore, modifying currently available adsorption materials has gained attention in research. RESULTS: In this study, a novel adsorbent MCOF-DES based on a magnetic covalent organic framework (MCOF) modified by a new deep eutectic solvent (DES) was synthesized for the first time and used as an adsorbent of MDMSPE. The MDMSPE was combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for selective separation, enrichment, and accurate determination of trace copper ion (Cu2+) in medicinal plants and environmental samples. Various characterization results show the successful preparation of new MCOF-DES. Under the optimal conditions, the enrichment factor (EF) of Cu2+ was 30, the limit of detection (LOD) was 0.16 µg L-1, and the limit of quantitation (LOQ) was 0.54 µg L-1. The results for the determination of Cu2+ were highly consistent with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method. SIGNIFICANCE: The established method based on a new adsorption material MCOF-DES has achieved the selective separation and determination of trace Cu2+ in medicinal and edible homologous medicinal materials (Phyllanthus emblica Linn.) and environmental samples (soil and water), which provides a promising, selective, and sensitive approach for the determination of trace Cu2+ in other real samples.


Assuntos
Estruturas Metalorgânicas , Plantas Medicinais , Cobre , Solventes Eutéticos Profundos , Reprodutibilidade dos Testes , Fenômenos Magnéticos
3.
Talanta ; 274: 126036, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604041

RESUMO

In this study, the one-step switchable hydrophilic solvent (SHS)-based effervescence tablet microextraction (ETME) was coupled with smartphone digital image colorimetry (SDIC) for the field detection of nickel ion (Ni2+) for the first time. Both extractant and CO2 were generated in situ when the novel SHS-based effervescence tablet was placed in the sample solution. The complexant 1-(2-pyridinylazo)-2-naphthaleno (PAN) dissolved from the effervescence tablet to form a stable complex with Ni2+, and the extractant was uniformly dispersed in the sample solution under the action of CO2 and fully in contact with Ni-PAN, which enabled efficient extraction of Ni2+. The color changes of the extraction phase were captured by smartphone, then a quantitative relationship between the concentrations of Ni2+ and color intensity of images captured using a smartphone was established by customized applet WASDIC, which realized quantitative analysis of Ni2+ in different samples. Under optimal conditions, the enhancement factor (EF) of the proposed method was 65.1, the limit of detection (LOD) and limit of quantification (LOQ) were 1.69 and 5.64 µg L-1, respectively. The developed method was successfully applied to the detection of trace Ni2+ in the environmental samples and natural medicines. And the applicability of the method for use in field analysis was validated.

4.
J Hazard Mater ; 458: 132050, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459760

RESUMO

In this study, based on the assessment of soil heavy metals (HMs) pollution using relevant indices, a comprehensive approach combined network environ analysis (NEA), human health risk assessment (HHRA) method and positive definite matrix factor (PMF) model to quantify the risks among ecological communities in a special environment around mining area in northwest Yunnan, calculated the risk to human health caused by HMs in soil, and analyzed the pollution sources of HMs. The integrated risks for soil microorganisms, vegetations, herbivores, and carnivores were 2.336, 0.876, 0.114, and 0.082, respectively, indicating that soil microorganisms were the largest risk receptors. The total hazard indexes (HIT) for males, females, and children were 0.542, 0.591, and 1.970, respectively, revealing a relatively high and non-negligible non-carcinogenic risks (NCR) for children. The total cancer risks (TCR) for both females and children exceeded 1.00E-04, indicating that soil HMs posed carcinogenic risks (CR) to them. Comparatively, Pb was the high-risk metal, accounting for 53.76%, 57.90%, and 68.09% of HIT in males, females, and children, respectively. PMF analysis yielded five sources of pollution, F1 (industry), F2 (agriculture), F3 (domesticity), F4 (nature), and F5 (traffic).


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Solo , China , Monitoramento Ambiental , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , Carcinógenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA