Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1927): 20200642, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32396801

RESUMO

Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.


Assuntos
Biodiversidade , Recifes de Corais , Microbiota , Microbiologia da Água , Animais , Filogenia
2.
PLoS One ; 17(2): e0264443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202411

RESUMO

Advances in the analysis of amplicon sequence datasets have introduced a methodological shift in how research teams investigate microbial biodiversity, away from sequence identity-based clustering (producing Operational Taxonomic Units, OTUs) to denoising methods (producing amplicon sequence variants, ASVs). While denoising methods have several inherent properties that make them desirable compared to clustering-based methods, questions remain as to the influence that these pipelines have on the ecological patterns being assessed, especially when compared to other methodological choices made when processing data (e.g. rarefaction) and computing diversity indices. We compared the respective influences of two widely used methods, namely DADA2 (a denoising method) vs. Mothur (a clustering method) on 16S rRNA gene amplicon datasets (hypervariable region v4), and compared such effects to the rarefaction of the community table and OTU identity threshold (97% vs. 99%) on the ecological signals detected. We used a dataset comprising freshwater invertebrate (three Unionidae species) gut and environmental (sediment, seston) communities sampled in six rivers in the southeastern USA. We ranked the respective effects of each methodological choice on alpha and beta diversity, and taxonomic composition. The choice of the pipeline significantly influenced alpha and beta diversities and changed the ecological signal detected, especially on presence/absence indices such as the richness index and unweighted Unifrac. Interestingly, the discrepancy between OTU and ASV-based diversity metrics could be attenuated by the use of rarefaction. The identification of major classes and genera also revealed significant discrepancies across pipelines. Compared to the pipeline's effect, OTU threshold and rarefaction had a minimal impact on all measurements.


Assuntos
Biodiversidade , Análise de Dados , Microbioma Gastrointestinal , Variação Genética , Invertebrados/microbiologia , RNA Ribossômico 16S/genética , Animais , Viés , Bivalves/microbiologia , Análise por Conglomerados , DNA Bacteriano , Conjuntos de Dados como Assunto , Rios/microbiologia , Análise de Sequência de DNA
3.
Front Microbiol ; 13: 800061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444631

RESUMO

The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded freshwater habitats worldwide, resulting in dramatic ecological changes and declines of native bivalves such as freshwater mussels (Family: Unionidae), one of the most imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea biology, little is known of how intrinsic and extrinsic factors, including co-occurring native species, influence its microbiome. We investigated the gut bacterial microbiome across genetically differentiated populations of C. fluminea in the Tennessee and Mobile River Basins in the Southeastern United States and compared them to those of six co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea was diverse, differed with environmental conditions and varied spatially among rivers, but was unrelated to host genetic variation. Microbial source tracking suggested that the gut microbiome of C. fluminea may be influenced by the presence of co-occurring native mussels. Inferred functions from 16S rRNA gene data using PICRUST2 predicted a high prevalence and diversity of degradation functions in the C. fluminea microbiome, especially the degradation of carbohydrates and aromatic compounds. Such modularity and functional diversity of the microbiome of C. fluminea may be an asset, allowing to acclimate to an extensive range of nutritional sources in invaded habitats, which could play a vital role in its invasive success.

4.
Microorganisms ; 9(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669471

RESUMO

Freshwater mussels perform essential ecosystem functions, yet we have no information on how their microbiomes fluctuate over time. In this study, we examined temporal variation in the microbiome of six mussel species (Lampsilis ornata, Obovaria unicolor, Elliptio arca, Fusconaia cerina, Cyclonaias asperata, and Tritogonia verrucosa) sampled from the same river in 2016 and 2019. We examined the taxonomic, phylogenetic, and inferred functional (from 16S rRNA sequences) facets of their microbiome diversity. Significant differences between the two years were identified in five of the six species sampled. However, not all species that exhibited a temporally variable microbiome were functionally distinct across years, indicating functional redundancy within the mussel gut microbiome. Inferred biosynthesis pathways showed temporal variation in pathways involved in degradation, while pathways involved in cellular metabolism were stable. There was no evidence for phylosymbiosis across any facet of microbiome biodiversity. These results indicate that temporal variation is an important factor in the assembly of the gut microbiomes of freshwater mussels and provides further support that the mussel gut microbiome is involved in host development and activity.

5.
Environ Microbiol Rep ; 11(4): 605-614, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162878

RESUMO

Teleost fishes interact with diverse microbial communities, playing crucial functions for host fitness. While gut microbiome has been extensively studied, skin microbiome has been overlooked. Specifically, there is no assessment of the relative impact of host and environmental factors on microbiome variability as well as neutral processes shaping fish skin microbiome. Here, we assessed the skin microbiome of a Siluriforme, the European catfish (Silurus glanis) sampled in four sites located in Southwestern France. We assessed the relative roles of individual features (body size and genetic background), local environment and neutral processes in shaping skin microbiome. Catfish skin microbiome composition was distinct to that of other freshwater fish species previously studied with high abundances of Gammaproteobacteria and Bacteroidetes. We found no effect of catfish individual genotype and body size on the structure of its associated skin microbiome. Geographical location was the best catfish skin microbiome structure predictor, together with neutral models of microbiome assembly.


Assuntos
Bactérias/isolamento & purificação , Peixes-Gato/microbiologia , Microbiota , Pele/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , França , Água Doce/microbiologia , Modelos Biológicos , Filogeografia , Plâncton/classificação , Plâncton/genética , Plâncton/isolamento & purificação
6.
Microbiome ; 6(1): 147, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143055

RESUMO

BACKGROUND: The surface of marine animals is covered by abundant and diversified microbial communities, which have major roles for the health of their host. While such microbiomes have been deeply examined in marine invertebrates such as corals and sponges, the microbiomes living on marine vertebrates have received less attention. Specifically, the diversity of these microbiomes, their variability among species, and their drivers are still mostly unknown, especially among the fish species living on coral reefs that contribute to key ecosystem services while they are increasingly affected by human activities. Here, we investigated these knowledge gaps analyzing the skin microbiome of 138 fish individuals belonging to 44 coral reef fish species living in the same area. RESULTS: Prokaryotic communities living on the skin of coral reef fishes are highly diverse, with on average more than 600 OTUs per fish, and differ from planktonic microbes. Skin microbiomes varied between fish individual and species, and interspecific differences were slightly coupled to the phylogenetic affiliation of the host and its ecological traits. CONCLUSIONS: These results highlight that coral reef biodiversity is greater than previously appreciated, since the high diversity of macro-organisms supports a highly diversified microbial community. This suggest that beyond the loss of coral reefs-associated macroscopic species, anthropic activities on coral reefs could also lead to a loss of still unexplored host-associated microbial diversity, which urgently needs to be assessed.


Assuntos
Bactérias/classificação , Peixes/microbiologia , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Ração Animal , Animais , Bactérias/genética , Biodiversidade , Recifes de Corais , Peixes/classificação , Humanos , Microbiota , Filogenia , Plâncton/microbiologia , RNA Ribossômico 16S/genética , Pele/microbiologia , Especificidade da Espécie
7.
Nat Commun ; 9(1): 4215, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310074

RESUMO

Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the Ostreid herpesvirus OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.


Assuntos
Bacteriemia/imunologia , Crassostrea/imunologia , Crassostrea/virologia , Herpesviridae/fisiologia , Terapia de Imunossupressão , Viroses/imunologia , Viroses/virologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Crassostrea/microbiologia , Hemócitos/efeitos dos fármacos , Hemócitos/patologia , Hemócitos/virologia , Proteínas Inibidoras de Apoptose/metabolismo , Fenótipo , Replicação Viral/efeitos dos fármacos
8.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26048284

RESUMO

Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).


Assuntos
Bass/microbiologia , Microbiota/genética , Dourada/microbiologia , Pele/microbiologia , Animais , Sequência de Bases , Biodiversidade , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA