Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39091849

RESUMO

Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification, using a Thumpd1 knockout mouse model. We find that loss of Thumpd1-dependent tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Remarkably, concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translation control as well as therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA